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Abstract We consider an axisymmetric Stokes flow in an infinite right circular cone, which has a source of
momentum (a Stokeslet) on its axis. It produces an infinite sequence of eddies in the conical flow region. A
boundary problem for a stream function is solved. The picture of the streamlines is obtained. We investigate an
eddy structure of the flow. The results can be used for constructing nanoreactors while carrying out chemical
reactions in strictly localized nanosized spatial regions.
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1 Introduction

Currently, an investigation of a fluid flow in nanotubes and other nanostructures has become one of the topical
issues of nanohydrodynamics [1,2]. Such kind of a flow takes place under small Reynolds number; therefore,
the inertia terms can be neglected and slow creeping flows can be considered [3–6]. They are described by
Stokes equations. Let us consider the following model object: a cone, which has a unit force at some point on
its axis, particularly, a Stokeslet. The last is an abstraction, which corresponds to an infinitely small area and
drives a fluid. Earlier the solution of a problem of an axisymmetric flow driven by an infinite circular cone has
been derived [7]. Steady axisymmetric converging flow under nonzero values of the Reynolds number has been
also investigated by Ackerberg [8]. He found the form of a stream function as a solution of the Navier–Stokes
equation as well as its asymptotic expansion.
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Viscous creeping flow near a vertex of a cone has been studied by Wakiya [9]. He showed the existence
of an infinite set of eddies near the apex if the half-angle of a cone is <80.9◦. The author of [10] consid-
ered axisymmetric Stokes flow for the same geometry due to rotation of a small sphere with a given angular
velocity. The classical review of these and other results concerning Stokeslets operating in a fluid has been
given in [11]. The flow in a corner due to a Stokeslet is considered in [12]. Liu and Joseph [13] developed a
theory, which led to a new set of eigenfunctions of the Stokes flow in infinite conical trenches, which described
axisymmetric flow near the vertex. Later, the numerical solution of the problem of a closed cylinder or a cone
with a fluid inside, which is driven by a sphere of a small radius, has been derived in [14]. Creeping flow and
emerging eddies were got in [15] in the case when there is a nonzero velocity at the boundary within a ring
0 < a1 < r < a2 < ∞, r being the distance from the apex of a cone. Moreover, Ref. [16] is devoted to the
Stokes flow between two coaxial cones with a source at the apex of an outer cone. The flow inside a rolling
nanocone is considered in [17].

A flow caused by a point force, Stokeslet, near a plane wall was considered by [18]. In [19], the flow induced
by a Stokeslet in a spherical cavity was studied. Stokes flow due to a Stokeslet in a domain between two parallel
flat plates was studied in [20], and in a pipe in [21,22]. An infinite Stokeslet array has been considered in [23].
From the mathematical point of view, a Stokeslet can be rigorously introduced in the framework of the theory
of self-adjoint extensions of symmetric operators [24,25] and [26].

Thus, it is of an interest to investigate fluid motion due to a Stokeslet in a cone. In this paper, a cone with
a fluid driven by a Stokeslet on its axis is considered under Stokes approximation. The result of this work
provides a new method for solving a particular axisymmetric case of a fluid flow caused by a Stokeslet inside
a cone.

2 Problem solution

Let us introduce the Cartesian and spherical polar coordinate systems.
Consider fluid that reposes in an unbounded cone (Fig. 1). We add a Stokeslet to the axis of a cone, at

point (x0, y0, z0) = (0, 0, c) in the Cartesian coordinate system. A Stokeslet is a unit force, which sets fluid in
motion. The Stokeslet is given by the corresponding Oseen tensor, which is the Green function, and determines
its velocity field [18]:

Gk
j = 1

8πμ

(
δ jk

|r| + r jrk

|r|3
)
, r = (x − x0, y − y0, z − z0). (1)

The velocity components in directions ρ, θ and φ can be found via transformation of physical vector
components [27]. We restrict our attention to the axisymmetric case, that is, the components of the Stokeslet’s
velocity depend only on ρ and θ . Among three possible Stokeslets, only one satisfies the condition v0φ = 0.
This is the Stokeslet with components v0 = (

G3
1,G3

2,G3
3

)
. Its components in the directions ρ, θ , and φ are as

follows:

v0ρ = 1

8πμ

2 cos θ
(
c2 + r2

) − cr
(
3 cos2 θ + 1

)
(
c2 − 2cr cos θ + r2

)3/2 , (2)

v0θ = − 1

8πμ

sin θ
(
2c2 − 3cr cos θ + r2

)
(
c2 − 2cr cos θ + r2

)3/2 , v0φ = 0. (3)

The Stokes flow of an axisymmetric case is characterized by a stream function ψ(ρ, θ) [7]. The velocity
components in this case are

vρ = 1

ρ2 sin θ

∂ψ

∂θ
, vθ = − 1

ρ sin θ

∂ψ

∂ρ
. (4)

It is of an interest for us to find contourlines of the stream function of a fluid moved by the Stokeslet v0. Let
us state the problem. The Stokes equation for an axisymmetric case is as follows:

E2(E2ψ) = 0, (5)

where the operator E2 is the Stokes operator defined by the following expression:

E2 ≡ ∂2

∂ρ2 + sin θ

ρ2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (6)
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Fig. 1 Cartesian and spherical coordinates for our problem

We add no-slip boundary conditions vρ(ρ, α) = 0 and vθ (ρ, α) = 0.

Let us turn to the Stokeslet v0 once more. Using (2), (3), (4), and the well-known relation ∂
∂θ

(
∂ψ
∂ρ
(ρ, θ)

)
=

∂
∂ρ

(
∂ψ
∂θ
(ρ, θ)

)
, we find the stream function ψ0 of the Stokeslet v0 with no boundaries:

ψ0(ρ, θ) = − ρ2 sin2 θ√
ρ2 − 2cρ cos θ + c2

. (7)

The streamline pattern for a flow due to a Stokeslet in an infinite quiescent fluid is very well known (see, e.g.,
[28]). Particularly, there are no eddies, which appear due to the interaction of the flow with the boundaries.
To obtain the stream function for our boundary problem, we represent it in the form ψ = ψ0 + ψ̃ . The
operator E2 is linear, so E2(E2ψ) = E2(E2ψ0)+ E2(E2ψ̃) = 0. The boundary conditions are v(ρ, θ)|α =
(v0(ρ, θ)+ ṽ(ρ, θ))|α = 0. One can convince himself that the stream function ψ0 satisfies the Stokes equa-
tion E2

(
E2ψ0

) = 0. Knowing the stream function ψ0 and Stokeslet’s velocity components v0ρ and v0θ , we
reformulate the problem:

E2
(

E2ψ̃
)

= 0, (8)

ṽρ(ρ, α) = −v0ρ(ρ, α), ṽθ (ρ, α) = −v0θ (ρ, α). (9)

The general solution of Eq. (8) is known [7]. As we are looking for a smooth solution, without any
singularities on the axis of the cone, the velocity of the fluid and the stream function ψ̃ has the form:
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ψ̃(ρ, θ) =
∞∑

n=0

(
Anρ

n + Cnρ
n+2) Jn(cos θ),

ṽρ(ρ, θ) = −
∞∑

n=1

(
Anρ

n−2 + Cnρ
n)

Pn−1(cos θ),

ṽθ (ρ, θ) =
∞∑

n=0

(
n Anρ

n−2 + (n + 2)Cnρ
n) Jn(cos θ)

sin θ

where Jn(ζ ) are the Gegenbauer functions of the first kind. They are linearly related with the Legendre functions
Pn(ζ ):

Jn(ζ ) = Pn−2(ζ )− Pn(ζ )

2n − 1
, (n ≥ 2), J0(ζ ) = 1, J1(ζ ) = −ζ.

We make an orthogonal decomposition of the velocity components at the boundary by Laguerre’s polyno-
mials Lk . These polynomials form a complete orthogonal basis for L2[0,∞), for which the weight function
is e−ρ . It is known that if function f (ρ) is piecewise smooth on an open interval (0, a) and, moreover, the
integral

∫ ∞
0 e−ρ f 2(ρ)dρ is a finite quantity, then the following series (10) with coefficients (11) converges

and its sum equals f (ρ) at any point ρ, where this function is continuous [29]:

f (ρ) =
∞∑

k=0

pk Lk(ρ), 0 < ρ < ∞, (10)

where pk are defined as follows:

pk =
∞∫

0

f (ρ)e−ρLk(ρ) dρ. (11)

For particular values of the cone angle 2α and the location of a Stokeslet, i.e., the point (0, 0, c), one can be
convinced that functions of the Stokeslet’s velocities at the boundary of a cone v0ρ(ρ, α) and v0θ (ρ, α) are con-
tinuous and are satisfied by the conditions of the aforementioned expansion theorem; thus, the decomposition
by Laguerre’s polynomials occurs and has the following form:

v0ρ(ρ, α) =
∞∑

n=0

an Ln(ρ), v0θ (ρ, α) =
∞∑

n=0

bn Ln(ρ).

We also make a decomposition by Laguerre’s polynomials of the constituent part of the velocity’s components
ṽρ(ρ, α) and ṽθ (ρ, α) at the boundary,

ṽρ(ρ, α) = −A2 P1(cosα)−
∞∑

n=1

(An+2 Pn+1(cosα)+ Cn Pn−1(cosα)) ρn,

ṽθ (ρ, α) = 1

sin α

∞∑
n=0

(n + 2) (An+2 Jn+2(cosα)+ Cn Jn(cosα)) ρn .

For that we use the prominent decomposition of a power function by Laguerre’s polynomials. Particularly, if
the index s is a nonnegative integer, then the series contains a finite number of summands,

ρs = s!
s∑

n=0

(−1)n
(

s
n

)
Ln(ρ), 0 < ρ < ∞; s = 0, 1, 2, . . . .

For mathematical calculations, we make a truncation of the series and consider finite sums of m terms instead
of our series. Then, we get the decomposition of Stokeslet’s velocities v0ρ and v0θ ,

v0ρ(ρ, α) =
m∑

n=0

an Ln(ρ), v0θ (ρ, α) =
m∑

n=0

bn Ln(ρ),
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and the decomposition of additional velocities components ṽρ and ṽθ :

ṽρ(ρ, α) = −
(

A2 P1(cosα)+
m∑

n=1

(An+2 Pn+1(cosα)+ Cn Pn−1(cosα)n!
)

L0(ρ)

+
m∑

k=1

(
(−1)k+1

m∑
n=k

(An+2 Pn+1(cosα)+ Cn Pn−1(cosα))n!
(

n
k

))
Lk(ρ),

ṽθ (ρ, α) = 1

sin α

(( m∑
n=0

(n + 2)(An+2 Jn+2(cosα)+ Cn Jn(cosα))n!
)

L0(ρ)

+
m∑

k=1

(
(−1)k

m∑
n=k

(n + 2)(An+2 Jn+2(cosα)

+Cn Jn(cosα))n!
(

n
k

) )
Lk(ρ)

)
.

After some tedious algebra, we get the linear algebraic systems for finding the corresponding constants.
In the following, we omit the argument cosα of the Legendre and the Gegenbauer functions for the sake

of brevity. The final system of linear algebraic equations to find coefficients Cm and Am+2 is as follows:

Am+2 Pm+1 + Cm Pm−1 = (−1)mam

m! ,

Am+2 Jm+2 + Cm Jm = (−1)m+1 sin α bm

m!(m + 2)
.

Subsequent coefficients can be found sequentially, using already calculated ones. Namely, for any k = 1,m − 1

Ak+2 Pk+1 + Ck Pk−1 =
(−1)kak − ∑m

n=k+1 (An+2 Pn+1 + Cn Pn−1) n!
(

n
k

)

k! ,

Ak+2 Jk+2 + Ck Jk =
(−1)k+1 sin α bk − ∑m

n=k+1(n + 2)(An+2 Jn+2 + +Cn Jn)n!
(

n
k

)

k!(k + 2)
.

The last few coefficients are unambiguously defined via all previous ones,

A0 = A1 = 0, A2 = a0 − ∑m
n=1 (An+2 Pn+1 + Cn Pn−1) n!

cosα
,

C0 = − sin α b0 + ∑m
n=1(n + 2)(An+2 Jn+2 + Cn Jn)n!

2
− A2 J2.

3 Results and discussion

The obtained analytical results allow us to investigate the structure of the flow. We consider an axisymmetric
flow inside a cone due to a Stokeslet. Calculations of the streamlines show that the flow has an eddy structure.
This cellular character is typical for the Stokes flows. Moffatt [30] was the first one who showed the sequence
of eddies near a sharp corner. Later, a similar flow structure was observed by many authors, for example
[21,25,31]. As for the cone flow, its description in various cases was given.

As for the details of our computations, we use a truncation with m = 40. Our approach allows us to obtain
the stream function in a bounded domain with respect to ρ (the domain of series convergence). Pictures of
streamlines for these domains are shown in Fig. 2, distinguishing from each other by an opening angle of
the cone. The received results are in accordance with those obtained by [13,14,32]. One can note that the
intensities of eddies decrease substantially moving away from the apex. The picture of the flow depends on the
chosen type of a Stokeslet. We chose the Stokeslet, which is not a source of mass, but a source of momentum.
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Fig. 2 Streamlines for a flow driven by the Stokeslet at point (0, 0, 4) in the cone with a half-angle: a α = π
10 , b α = π

8 , c α = π
6

Hence, we have conservation of mass in the fixed volume. The cellular structure is natural for the Stokes flow.
In our case, for small opening angles, one can see a vertical (along the cone axis) cellular structure in the
domain close to the Stokeslet (Fig. 2a, b). For larger values of the angle, there appears a horizontal cellular
structure (Fig. 2c).

The cellular structure of the flow can find interesting chemical applications. One of the intriguing problems
of modern nanochemistry is the creation of chemical nanoreactors. The nanoreactor is such a nanostructure
that gives us a possibility to perform some chemical reaction strictly inside some small (nanosized) spatial
region. A possible way to ensure this result is to collect all reagents for given chemical reaction only in the
chosen spatial region. It can be done using mechanical properties. Namely, let the fluid be multicomponent
(e.g., it contains different reagents). The existence of an eddy leads to spatial separation of the components
(due to the difference of its densities). As a result, one can get the collection of reagents inside this eddy (i.e.,
in this nanosized region). The separation processes of such types were observed experimentally (see, e.g.,
[4,33]). To construct the nanoreactor of such kind, it is necessary to know the cellular structure of the flow.
The Stokeslet (causing the flow) inside the nanocone can be excited by an external field. Our model gives an
instrument for the flow structure description.
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