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Coupling Computer Models through Linking their Statistical Emulators*

Ksenia N. Kyzyurova®, James O. Bergert, and Robert L. Wolpert!

Abstract. Direct coupling of computer models is often difficult for computational and logistical reasons. We
propose coupling computer models by linking independently developed Gaussian process emulators
(GaSPs) of these models. Linked emulators are developed that are closed form, namely normally
distributed with closed form predictive mean and variance functions. These are compared with a
more direct emulation strategy, namely running the coupled computer models and directly emulating
the system; perhaps surprisingly, this direct emulator was inferior in all illustrations. Pedagogical
examples are given as well as an application to coupling of real computer models.

Key words. Gaussian process emulator (GaSP), Coupling, Computer model, System of simulators

AMS subject classifications. 60G15, 62F15, 62M20, 62P35, 86A04

1. Introduction. Gaussian processes (GaSPs) have become a common tool for emulating
(approximating) complex computer models. An example is [1], where an objective Bayesian
implementation of a GaSP is used to approximate a computer model of a pyroclastic flow on
a volcano, with the ultimate goal of identifying conditions which lead to hazardous events.

Sometimes more than one computer model needs to be utilized for the predictive goal. For
instance, to model the true danger of a pyroclastic flow, one might need to combine the flow
model (which can produce the flow size and force at a location) with a computer model that
provides an assessment of structural damage, for a given flow size and force. Or to predict the
danger from volcanic ash, one needs to combine a plume model that gives the magnitude and
height of an eruption, together with a wind model that will predict its dispersion. Coupling of
a system of models is used in many other important applications, e.g. climate modeling [22],
oil fracturing simulation [19], and seismic activity modeling [13].

The specific context we consider is that of having a computer model g(z1,...,z4), the
z; being model inputs, at least some of which themselves arise from computer models, i.e.,
zi = fi(+), where f;(-) is a computer model with its own inputs.

Direct coupling of computer models is often difficult, for both computational reasons and
logistical reasons (e.g., the outputs of one model may not be completely compatible with
the inputs of the other). Thus, in this work, we propose coupling computer models by first
developing separate Gaussian process emulators for each model, and then linking the emulators
through analytic methods; we will call this the linked emulator.

Another possible approach is to sequentially exercise the coupled computer models, ob-
taining input/output pairs, the inputs from the first model and the outputs from the coupled
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2 KSENIA N. KYZYUROVA, JAMES O. BERGER, AND ROBERT L. WOLPERT

model. A composite emulator is an emulator developed directly from this input/output data.
While seemingly the natural way to emulate a coupled system, this approach cannot always
be implemented; it might not be feasible to sequentially exercise the computer models, or one
might only have previous separate runs of the models to deal with. This provided the original
motivation for developing the linked emulator.

Perhaps surprisingly, we found in all our illustrations that the linked emulator actually
performed better than the composite emulator (and often dramatically so) according to all
evaluation measures used. The reason appears to be that coupled models are typically less
smooth than the component models, making their emulation more difficult. This, of course,
need not always be the case, but the fact that we encountered this in all our examples (many
not shown in the paper) is revealing.

The approach to the problem of linking statistical emulators that we have taken origi-
nates from the work on sensitivity analysis of the output due to uncertain inputs [4, 16]. The
straightforward approach to linking would be simply to do so by simulation [8]: for a given
input to the first emulator, draw a sample from the GaSP emulator output, and then run this
sample through the second emulator to obtain a sample from the linked emulator. This can
become computationally expensive, however, especially because one often needs to perform an
optimization or MCMC analysis involving randomness in the original emulator input. Alter-
natively, variational Bayesian methods [7] may be applied for finding a good approximation to
the system. Other papers also work with individual models of coupled systems. For instance,
[21] provides an excellent review of the uses of experiments on individual models in the overall
task of verification and assessment of a coupled system; the paper does not consider emulators,
however.

In this work, we seek a closed form expression for the linked emulator and its uncertainty.
For certain GaSPs, one can give closed form expressions for the overall mean and variance of
the linked emulator [6], and we generalize those results to the more complex situations con-
sidered herein. Unfortunately, the linked emulator itself does not have a simple distribution,
so we simply approximate it by a normal distribution with the closed form mean and vari-
ance; this forms our recommended closed form linked emulator. The accuracy of the normal
approximation is studied, empirically and with limited theoretical results, and seems to be
very good.

Illustrations given in the paper include several pedagogical examples and an application
to coupling of real computer models: coupling of bent — a computer model of volcanic ash
plumes arising from a vent — and puff — a computer model of ash dispersion.

The model bent has four inputs: vent radius, vent source velocity, and the mean and
standard deviation of ejected volcanic particles. The model solves for characteristics of the
ensuing volcanic eruption column, in particular, giving the minimum and maximum height
of the column, its width, and the size characteristics of ash particles in the plume (in terms
of their means and standard deviations); denote these d = 5 outputs fi(-),..., f5(-). The
outputs of bent act as inputs to the model puff, denoted as g(fi(-),..., f5(-)), which solves for
the ensuing ash cloud height at various space-time locations, based on a specified wind-field
that disperses the ash. The schematic diagram of inputs and outputs of the coupled model is
provided in Figure 1.

The outline of the paper is as follows. Section 2 gives a general description of the GaSP
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COUPLING COMPUTER MODELS THROUGH LINKING THEIR STATISTICAL EMULATORS 3

Plume height (min)
vent radius / Plume height (max)x
velocity _ BENT_-/__>7 Plume width ————— ==[PUFF|———= Ash cloud height
grain size (mean) ——— 5 \ /
/ Ash particles (mean)
grain size (stdev) \ /
Ash particles (stdev)
Figure 1. The diagram of the composite coupled model of volcano eruption, bent-puff.

emulator methodology. We present the linked emulator in section 3 and its linear approxima-
tion in section 4. An illustration of the approach is given in subsection 4.1. In section 5 we
compare the linked emulator to the alternative composite emulator, directly constructed from
the coupled computer models.

For computational reasons, uncertainty in the parameters of Gaussian process emulators is
often ignored. Objective Bayes methodology provides a framework to overcome this problem,
by providing analytically tractable full Bayesian inference [2]. Section 6 provides a description
of the GaSP emulator within this framework, and the corresponding linked emulators are
given. We present the bent-puff case study in section 7. We conclude with a discussion
in section 8.

2. Preliminaries.

2.1. GaSP emulator of a computer model. Suppose a computer model g represents
a smooth function g¢(z), which takes input z € D C R? (possibly, multidimensional,
d > 1) and produces an output g(z) € R. Suppose we observe m computer model out-
puts (g(z1),-..,9(zm)), evaluated at corresponding inputs z = (z1,..., zy). From this set of
inputs and outputs, assuming a Gaussian process prior on computer model data, one finds a
probabilistic representation of an output of a computer model g at a new input 2’.

A Gaussian stochastic process, g™ (-), is fully specified by its mean and covariance function.
Given parameters, g, of the GaSP, for any finite set z = {z1,...,2m} of d-dimensional
inputs {z; = (21, zi2, - - -, zia) }7op, 8M(2) = {gM(21),..., 9 (Zm)} = (9(21),...,9(Zm)) has
a multivariate normal distribution. That is,

g™ (z) ~ N(u(z), 0, K>),

where pu(z) = (fi(21), - .., i(zm)) and fi(-) is the mean function of the GaSP, o7 is the unknown
variance and K, is the correlation matrix whose (k,[) element is a correlation function c¢(z, z).

Sometimes the GaSP model has to be augmented with iid mean-zero Gaussian white noise
€ to provide a more appropriate emulator [11] or for numerical stability of a GaSP [9]. Then,

for any z, gM(z) ~ N(u(z), 02K, + 72I). For convenience we reparametrize the model as

(1) g™ (z) ~ N(u(z),0;Cs),

where C, = K, +nl, with K, being a correlation matrix defined as before and 7 determining

the ratio of the nugget variance 72 to 03.
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4 KSENIA N. KYZYUROVA, JAMES O. BERGER, AND ROBERT L. WOLPERT

We present the methodology for this general case of an emulator augmented with a nugget;
note, however, that the results will also apply if the nugget effect is initially assumed to be
zero (simply set 7 = 0 in the expressions).

Note that GaSP computer model run outputs, g™ (z), at a set of inputs z, together with
computer model run outputs, g™ (z'), at another set of inputs z’, follow a joint multivariate

normal distribution
(£)5(6) (8 )

where C,/ is the correlation matrix whose (k,[)th element is a correlation function ¢(-,-) and
a nugget component for diagonal elements, that is c¢(z',z'1) + nlg—;.

It follows that, conditional on the observed computer model evaluations g™ (z), the poste-
rior predictive GaSP at any input z’ (given GaSP parameters 6g) follows a normal distribution
with mean p*(z’) and variance o*2(z') given by

(2) pi(@) = p(@) + e(z', )0 (g™ (2) — pu(2)),
(3) 0*%(2') = 0*(C — (2 ,2)C;  c(2,2)).
Traditionally the GaSP mean function fi(-) is chosen to be a linear model h(-)3, where

h(-)T is a vector of regression functions [18] and 8 € R™ is a vector of unknown regression
coefficients, i.e.,

h(-)8 = Boho(-) + Brhi(-) + ... + Buhn(:).

The GaSP correlation function ¢(-, -) is typically assumed to be in the form of a product of
one-dimensional correlation functions along each dimension of the d-dimensional inputs. The
correlation between outputs at two inputs zy and z; equals

d
c(zx,21) = H c(2nj, 215)-
j=1

For the jth coordinate, the correlation is often assumed to be of the power exponential form

_ 255 — 2151\ ™
c(2nj,215) = exp § — s ,
j

with a range parameter ¢§; € (0,00) and a smoothness parameter «; € (0,2] along each
coordinate.

The correlation c(z,z')T

=c(z',2z) = (c(Z,21),...,¢(2z',2m)). For any two inputs z; and

N
z', the resulting power exponential correlation is ¢(z’,z;) = exp (— Zd (lzjé_z J‘) ]), where
J

j=1
d is the number of coordinates in input z and j = 1, ..., d denotes one of the d coordinates in
each z; = (z1,...,%4); i = 1,...,m denotes one of m inputs z1,...,2m.

We will primarily consider the case a; = 2, j = 1,...,m, as this is the most important

scenario in which closed form expressions for the mean and variance of the linked emulator
are available. This will be discussed in section 3.
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COUPLING COMPUTER MODELS THROUGH LINKING THEIR STATISTICAL EMULATORS 5

Once all the parameters of the GaSP, fg, are specified, the conditional posterior predictive
distribution is used for emulation of the computer model g.

2.2. Estimating parameters in the GaSP. It is common to just use maximum likelihood
to estimate the GaSP parameters. However, these can be very problematical [12], and a better
method is to develop estimates as posterior modes using an objective Bayesian implementa-
tion, as initially done in [3]. Follow up work in [10], [12] and [17] has led to the following
recommendations for estimating the highly confounded parameters o2, 7 and {0j}j=1,..ain the
covariance function. First, transform to 5; = —ajlogdj, for all j =1,...,d, and 7 = log %
Then estimate these as the marginal posterior modes found by objective Bayesian analysis,
using the reference priors that are available in the above references. Finally, transform back to
obtain estimates of n and {d;};=1_. 4. All our analyses will be based on using these estimates.

For the parameters $ and o2, however, there are several possibilities. One is to just
use their maximum likelihood estimates, which are readily available; we will give resulting
emulators the label ML. The second possibility is to perform a full objective Bayesian analysis
with the mean parameters /3, but use the maximum likelihood estimate of ¢2; such emulators
we assign the label POB, for ‘partial objective Bayes.” We discuss this choice in subsection 6.1.
The third possibility is to perform a full objective Bayesian analysis for both # and ¢?; such
emulators will be given the label OB, and will be discussed in subsection 6.2.

2.3. Predictive evaluations. Although some theoretical evaluations of studied emulators
will be possible, for most of the paper the evaluations will be empirical. We will utilize three
standard predictive criteria: empirical frequency coverage (EFC) of a function by credible
intervals from the emulator, root-mean-square predictive error (RMSPE) and average length
(Lcr) of the credible intervals.

Let u = (u1,...,uy) be n test points, for which the true value of a simulator f(u;) is known
for each i = 1,...,n. For each test point we find a predictive distribution p; ~ N(u;, 022) or
pi ~ Tap(pi, 0?) (needed for evaluation of later emulators), and form the 95% credible interval

CL = (q?'025, q?'975), where ¢%0%° and q?‘975 are, respectively, the 2.5% and 97.5% quantiles of

X2
the predictive distribution p;. Then the predictive criteria are defined as follows:

n
EFC = ZIYZ.GCL /n,

i=1
RMSPE = | > "(f(ui) — p)?/n,
i=1
no (0975 _ 0025
LCI — ZiZI(Qz - q; )

EFC, with the nominal value 95%, is the propotion of times the true function falls within
the 95% credible intervals. RMSPE assesses the discrepancy between a simulator and an
emulator’s mean. Lcy is a measure of the stated accuracy of an emulator.

This manuscript is for review purposes only.
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6 KSENIA N. KYZYUROVA, JAMES O. BERGER, AND ROBERT L. WOLPERT

It is sometimes helpful to compare RMSPE with the reference quantity

m
RMSPEpase = | »_(f(u:) — £(2))2/m,
i=1
where f(z) is the sample mean of the observed computer model outputs over the design points
z = (z1,...,2m) used to construct the emulator. f(z) is, in some sense, the crudest possible
emulator, so the ratio RMSPE/RMSPE},,s measures the quality of the emulator being studied.

3. Linked emulator. Suppose that we have two computer models, g and f, and have
constructed their corresponding GaSP emulators, g™ and f, as described in subsection 2.1.
Thus the GaSP emulator g (-), of the model g at any new input, given pairs {z,g(z)} of
model runs and GaSP parameters 0, is

(4) 9" () | 8™ (2), 0 ~ GaSP(sug(1), 0 (:. ).

Likewise, the GaSP emulator fM(.), of the model f, given pairs {x,f(x)} of model runs and
its parameters 0, is

FHC) | EM(x), 0 ~ GaSP(3(), o7, )

In this section, the GaSP parameters are assumed known. In practice, they will either be
specified (in the case of the shape parameters) or estimated, following subsection 2.2. The
expressions in this section then just apply with the estimates plugged in.

Suppose first that input z to g arises from the computer model f, so that we have the
composite computer model go f . Assuming we have the above emulators for each model, we
can then define the associated emulator g™ o fM. Actually, we are primarily interested only
in the marginal distribution of this emulator, namely

(5) pllgoHM(u)| g™ (), f¥(x), b, bg, 1) =
/p(gM(fM(u)) | &Y (2), M (w), 0g)p(f (u) | £ (x), O¢)df " (u).

Definition 3.1. The variable ¢ = (g o f)M(u) | gM(z), fM(x), b¢, Og, u with the distribu-
tion (5) is called the linked emulator.

We will sometimes use the shortcut notation for the linked emulator
(6) plgo HMC) = [ ol (DR,

More generally, as defined in subsection 2.1, g will have a d-dimensional input. Suppose
that the first b — 1 inputs do not arise from other computer models and hence do not need to
be linked. (But they will still be part of the emulation of g.) The remaining inputs will result
from computer models, f;, for coordinates j € b,...,d. Assume, for each j € b,...,d, that
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211
212

DD
——t
INGV)

215
216
217
218

219

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248

COUPLING COMPUTER MODELS THROUGH LINKING THEIR STATISTICAL EMULATORS 7

we then construct a GaSP emulator, fJM(-), of the model f;, given pairs {d, £(x3)} of model
runs and parameters 0f;, as

(7) £ M), 0 ~ GaSP(uj, (+), 072 (-, ).

Assuming independence of the fJM (), the marginal distribution of the emulator of the
composite computer model g o (fp,..., fq4), at a new input u, is then

) pl(g0 (oo S () | &M@ ENS) Ly O, ) =

[ ol @0, £ ) £ ) | M) ) )

geeey

d
[1p( () | £M), 0 )df (), ..., df " (u),
j=b

where the new input u consists of the first b — 1 inputs of the model g and the new inputs w
are the inputs to the models f; Vj € b,...,d, i.e. u=U(u?, {uj}‘j:b) with u® = (21,...,2,_1).

Definition 3.2. The wariable ¢ = (g o (fpy---, f))M(u) | gM(z),f}M(xj)jeb 7

0. Og,u, with the distribution (8), is called the multivariate-input linked emulator.

jjeb,...,d’

For brevity, in the rest of the paper we will simply write g™ (-) and ™ (+), without the
conditioning, implicitly assuming the conditioning on relevant model run data and model
parameters.

The linked emulator & does not have a closed form distribution. The key fact in developing
an approximation is that, if the smoothness parameter of the power exponential correlation
function is @ = 2 or @« = 1 and if p(z) is one of three distributions — Normal, Laplace or
Exponential — one can give closed form expressions for the overall mean and variance of the
linked emulator, providing the regression functions in the GaSP mean h(z) (and h(z)?) have
closed form expectations when z ~ p(z). Typically h(z) is either zero, constant, or linear in
the inputs, in which case these expectations will be available in closed form.

The choice @ = 1 corresponds to the exponential covariance function, which yields GaSP
sample paths that are not mean-square differentiable. In most applications, the computer
model is a smooth function of the inputs, so a = 1 is not usually a reasonable choice. On the
other hand, o = 2 corresponds to the squared exponential covariance function, which results
in a GaSP with infinitely differentiable sample paths, and so is a better reflection of the
smoothness of the computer model in applications. In the spatial statistics literature, o = 2 is
often criticized for producing too smooth sample functions, but the situation with computer
models is different than that for most spatial models, in that the input points for the computer
model runs are usually quite distant. GaSPs with squared exponential covariance functions
have also proven to be useful for incorporating shape constraints such as monotonicity and
convexity [23].

Theorem 3.3. Suppose g™ has the linear mean function h(z') = By + Bizy, and a product
power correlation function with o = 2 for coordinates j € b,...,d. For each j €0,...,d, let
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fJM, as in (7), be an independent emulator of f;, the function which gives rise to the value of

input j for g(-). Then the mean EE and variance V& of the linked emulator & of the coupled
stmulator (g o (fp,--., fa))(u), as defined in Definition 3.2, are

m d
B¢ — Bo-ﬁ*ﬁl/lfb +Za1HeXp< <|U]_Zzﬂ > )H
VE=?(1+n) + 53 + 2806115, (uP) + BF (0 (uP) + (1, (uP))?) — (EE)*+

S anas — ey L (7)) g 117 e

k=1 Jj=1
< |uj — 24 i
. 1
2Za1Hexp< ( ]53 ”) ><501g+51f+b> H I
Jj=b+1
where a = (a1, ...,an)T = C; 1 (gM(z) — h(z)B) and
z
J *2 j 2 *2 j
2 (ud) 0% + 20%4(ud
14270 j 207 (w)
J
(5005, 09)
i 1 67?+2a*2(ul) <ij2;§[])
I o7 (ud)
1+4 ]62,
J
J*Z(Ub)
f * b %
+i 2 béf Z"b—i_'ufb(u) (Zzb :ufb( u®))?
Iy = exp 5 .
o} +20f( b)

The proof of a more general theorem, having mean h(-)3, is given in the appendix.

4. Linked GaSP as a normal approximation to the linked emulator. In this section
we consider the normal approximation to the linked emulator, using its analytical mean and
variance. After the definition, we present a numerical example and then some theoretical
results.

Definition 4.1. Whereas & in Definition Definition 3.2 was called the linked emulator, the
variable ¢ ~ N(EE, V&) will be called the linked GaSP.

4.1. lllustration 1. To illustrate the developed methodology of the linked GaSP, two
functions are considered as simulators: f(z) = 3z+cos(5z),x € [—1,1] and g(z) = cos(7z/5)—
z,z € [—4,4], and we are interested in coupled model

go f(x) = cos(7[3x + cos(5x)]/5) — [3x + cos(5x)] .

This manuscript is for review purposes only.
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Figure 2. Independent emulators constructed for two test functions: f(x) on the left panel and g(z) on the
right. Each emulator is an interpolator at its design points. The pink lines are the true functions. The dark
green lines are the emulator means. The green shaded regions are the regions enclosed by the 2.5% and 97.5%
quantiles of the emulators. The circles on the plots correspond to the design points which were used to fit the
emulators.

Model f is evaluated at 6 equally spaced training input points x =
(—1,-0.63,—0.26,0.11,0.48,0.85), resulting in z = f(x) = (f(x1),..., f(zs)) = (21,...,26)-
An emulator fM(-) of the model f is constructed, based on these observations {x,z}, as
described in subsection 2.1.

The output points z are then used as design input points to the model g. (This utilization
of the output of one model as input to the other was done so that this example can be used
later to compare the linked emulator strategies with traditional coupling strategies; of course,
the linked emulator strategies do not require using the outputs of one model as the design
points for the other, one of the their big advantages.) Model g is evaluated at z, resulting
in g(z) = (g9(z1),...,9(26)). We then use {z,g(z)} to construct the emulator g™ () of the
simulator g.

Parameter estimates of each of the GaSPs were obtained, using the methodology described
in subsection 2.2, with the ML approach used for the mean and variance parameters. (We
refrain from attaching the ML label to the emulators, until we later encounter emulators
arising from other estimation methods.) The resulting emulators are shown in Figure 2.

Utilizing the individual function emulators, the linked GaSP (¢) and linked emulator (&)
were then determined, the latter through simulation. (After constructing the emulator f(-)
of model f and the emulator g (-) of model g, one simply generates a realization from the
emulator fM(.) and then a realization from g (-) conditional on the realization from f(-);
the result is a realization from the true linked emulator (go f)*(-).) Repeating this procedure
many times results in a Monte Carlo representation of the true linked emulator.The results are
presented in Figure 3. The linked GaSP is doing exceptionally well, acting as an interpolator
at the design points to the simulator f and capturing the entire composite function go f(x) on
x € [—1,1] within its 95% credible area. Furthermore, it is indistinguishable from the linked
emulator, providing support for the use of the normal approximation based on the known
mean and variance.
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Figure 3. The left panel is the linked GaSP constructed from f™(-) and g™ (), and the right panel is
the linked emulator, estimated by simulation (104 samples). The pink lines are the true functions. The dark
green lines are the emulator means. The green shaded regions are the regions enclosed by the 2.5% and 97.5%
quantiles of the emulators. The dashed lines correspond to quantiles of the linked emulator. The circles on the
plots correspond to the design points {x,(go f)(x)}.

4.2. Theoretical results. We consider the situation in which the variances of the fJM (+)
are small, establishing theoretically (as expected) that the linked GaSP is then an excellent
approximation to the linked emulator.

First, it is useful to find a first order approximation to the linked emulator.

Lemma 4.2. If, for each j € b,...,d, the emulators fJM() are as in (7) and gM(-) is an
emulator as in (4), then, for any new input u,

d 2
M. 0 b d "0 b d j
Ble = (9 (0, e, (uP), g, (0) + 7 g (00, (00), o, (u)) o ()N )
j=b
d 7 ki+1
2 0 b d 2 J\Ri Tl ki+l;
= 3 ol ) o 0 [ S ) e |
j=bk;=1 |K|=3,|L|=1;
|K|=|L|=2;
|K|=1,|L|=3
where & s the linked emulator, u;;_ 18 the partial derivative of the function ,uZ(-, coyr) with
J
respect to the jth coordinate, O';QZ_ ~is the second-order partial derivative of the function
773
022(-, ...,+) with respect to the jth coordinate and No 1 is a standard normal random variable.

The proof of the lemma is given in the appendix.
The following are immediate consequences.

Theorem 4.3. Under the same conditions and wusing Lemma 4.2 & —
d ! * j
(gM(uo, g, (), g, () 4 375, (0O, (), (a))e (uJ)No,1> converges
in La-norm to zero when all U;ij(uj) go to zero.

This manuscript is for review purposes only.
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Corollary 4.4. Under the same conditions as in Lemma 4.2, it follows from Theorem 4.3
that € and ¢ both converge in La-norm to g™ (u®, u}b(ub), . ,u’}d(ud)) as all the a;‘cf(uj) go
to zero.

Theorem 4.5. Under the same conditions as in Lemma 4.2 and if, for each j € b,...,d,
w is such that 0'*]_2(11‘]) =0, then £ = gM(uO,M}b(ub), ce uj}d(ud)) =C.
This last theorem states that, under the indicated conditions, the linked GaSP is exactly the
linked estimator.

5. Comparison of the linked GaSP to the composite emulator. The other natural emu-
lator that we mentioned is the composite emulator, formed by sequentially running the simu-
lators f and g, and then developing an emulator based only on the inputs to f and outputs of
g. More formally, suppose we have m d-dimensional inputs z = {z1,...,zm} to a composite
simulator g o (fp,..., f4). In order to evaluate a composite computer model at these inputs,
we first evaluate each model f;, for j € b,...,d, at corresponding inputs zj1:m = (le e ,zJ;n)
where z{ = {zik}ker;- That is, for each input zf we obtain output f; (ZJI) Then, using the
outputs from all models f;,j € b,...,d, we evaluate g at each of the ith d-dimensional in-
puts (z,...,2; (b_l),fb(z'io), .. .,fd(z;i)). Thus, we obtain a set of training inputs-outputs
of the composite simulator z = {z;}/"; and {(g o (fs,..., f4))(2zi)}/~;. Then the emulator of
(go(fp, ..., f1))M(-) may be constructed, using these inputs-outputs from the coupled system,
as described in subsection 2.1.

Definition 5.1. The GaSP emulator (g o (f,..., )M () of the composite model
g o (fo,---,fa), given GaSP parameters Ogqs, .g,), namely the emulator (g o
(for - MO (g0 (s - - -, £a))M(2), Ogosy,,.. £4) described above, will be called the com-
posite emulator.

It may not always be possible to construct a composite emulator, in that one might not
have control over running the models f(-) or g(-), and instead just have available collections
of previous runs. Thus there will always be times in which only the linked emulator (or linked
GaSP) is available.

Perhaps surprisingly, it seems that utilization of the composite emulator may not be desir-
able, even when it can be constructed. As a first indication of this, consider the illustration in
subsection 4.1. Figure 4 shows the composite emulator for (go f)(z) in the domain z € [—1, 1],
using the same design points x as in subsection 4.1, and with parameters again estimated
through the ML approach from subsection 2.2. Surprisingly, the composite emulator does a
much worse job of emulation (compare to Figure 3). It has a much bigger variance but, even
worse, the confidence bands miss the true composite function over part of the domain.

This comparatively poor behavior of the the composite emulator is quite common. It
seems to arise because, while the functions f and ¢ might be quite smooth — which allows
for their accurate emulation with a small number of design points, the composite function
(g o f)(x) can be considerably more ‘wiggly’, and hence much harder to emulate directly.
Additional evidence for this will be seen later.

Note that the computational costs in training the linked emulator and the composite
emulator were identical in this example; each required six runs of each model.

We also assessed the linked GaSP and the composite emulator of the coupled simulator

This manuscript is for review purposes only.
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1 -063 -026 0.11 048 085
X

Figure 4. Composite emulator of a composite test function. The pink line is the true function. The dark
green line is the emulator mean. The green shaded region is the region enclosed by the 2.5% and 97.5% quantiles
of the emulator. The circles on the plot correspond to the design points {x, (g o f)(x)}.

Table 1
Predictive evaluations for the linked GaSP and composite emulators in the illustration.

Emulator | EFC | RMSPE | L

Linked 1.00 0.13 0.62
Composite | 0.76 0.43 0.92

g o f, using the predictive measures from subsection 2.3. 201 test points, u, equally spaced
in [—1,1], were used for the assessment. Numerical results are presented in Table 1. The
performance of the linked GaSP is much better in terms of the predictive measures than the
performance of the composite emulator. The RMSPE of the linked GaSP is more than 3
times smaller than that of the composite emulator. While the linked GaSP is capturing the
composite simulator on the whole domain [—1, 1] in its 95% credible intervals, the composite
emulator intervals miss the truth about 24% of the time. The length of the credible intervals
of the linked GaSP are about two thirds of those of the composite emulator.

6. The POB and OB linked emulators. Previously, we have only considered emulators
of a function g when all parameters of the emulator are given; in the illustrations, we simply
replaced parameters by their estimates, discussed in subsection 2.2 as the ML approach.
Here we develop linked emulators for the POB approach (full objective Bayesian treatment
of the mean parameters, but utilizing an estimate for the variance) and the OB approach
(full objective Bayesian treatment of both mean and variance parameters). Emulators that
account for the uncertainty in the mean or mean and variance parameters give more accurate
assessments of the emulator predictive variance, and hopefully this will carry through when
they are linked.

6.1. POB linked emulator. Suppose that the GaSP mean is a linear function. We perform
an objective Bayesian analysis with the parameters 8 in the mean (using a constant prior
7(B) oc 1), but use the marginal maximum likelihood estimate of o2. The corresponding
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GaSP (with 3 integrated out, the MLE estimate of o2 plugged in, and the reference posterior
mode estimates of ¢ plugged in), conditional on the observed computer model evaluations
gM(z), follows a normal distribution with mean x*(z’) and variance o*(z') given by

p'(#) = h(z)8 + c(2,2)C; " (g™ (2) — h(z)B),
o*(2) = 0® (Cor — (2, 2)C ' e(z,2) + (h(2) — c(2,2)C; "h(z))
(

h(z)"C>'h(z) " (B(z) - (2, 2)C-'h(2))" ) ;

this is the POB GaSP emulator. Note that it differs from the ML GaSP emulator only in
having additional (positive) terms in the predictive variance.

6.1.1. Development of the POB linked emulator.

Theorem 6.1. Let g™, with given parameters Og = (a2, {65}j=1....a), be a POB GaSP
emulator of a simulator g exercized at training input points z. Suppose the mean is linear
in the bth cooordinate of an input z', so that the mean is h(z')3 = Bo + Biz}. Let the g™ (-)
GaSP correlation function smoothness parameters o of coordinates j € b, ...,d be equal to 2
For each j € b,...,d let fJM be an independent emulator of a simulator f;, corresponding to

the coordinate j of the input to the simulator g, i.e. fJM(-) is any GaSP with predictive mean
and variance at any input - denoted as u}j(‘) and U*?c]_ (+) respectively. Then the mean EE and
variance VE of the linked emulator £ of the coupled simulator (go (fy,..., fq))(u) are

m b—1 ) d
E¢ = Bo + b}, +Z(M’H8XP <— <|u] % > ) H

i=1 j=1
VE=02(14n) + o + 260015, (W) + A" (072(uP) + (1}, (uP))?) — (BE)*+

e G Ty

1 Jj=1 J

j=b
I\ Y N d
(_ <|U] 6j21]’) > (BOIé +51[+b> ZIZI

j=1 J
a“?(Tu + (T12 + To1) 10, (uP) + Taz (032 (uP) + (1, (uP))?))+

o2 i (AzZ 2A1iff§,> ;

NE

k.l

'MS
.':1

i 1
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1 -063 -026 011 048 085 f(xe) f(xs) f(x1)  'f(xe) f(xs)
X Z

Figure 5. Independent POB emulators constructed for two test functions: f(x) on the left panel and g(x)
on the right. Each emulator is an interpolator at its design points. The pink lines are the true functions. The
dark green lines are the emulator means. The green shaded regions are the regions enclosed by the 2.5% and
97.5% quantiles of the emulators. The circles on the plots correspond to the design points which were used to
fit the emulators.

393 where
304 () = " e hi) o) M),
1
395 ait = (C'h(z)(h(z)" C; 'h(z) 'h(z)" ;' = 2 D,
o _(Tu T2\ _ T -1 -1
396 T = <T21 T22> = (h(z)" C; "h(z)) ",
397 A= (h(z)"'C ' h(z) h(z)"C] Y,
aos 72 = = M) (€1~ 7 h(a) (h(#) O () h() M),
400 and
2 2

_(“i_“}b("b)> «2( b 3, % (1b _(“"_"7b(“b))

01 I = ; 0 : e hTp ) R - 20,07, (u )ui+5b“fb(;1 )e 37 +2072(aP)
0f + 20%2(uP) \/ 2 %2(11b

402 ' <5b + 207, (u )>

103 Definition 6.2. ¢ ~ N(E¢, V&) will be called the POB linked GaSP.

404 6.1.2. lllustration 2. Two functions are considered as simulators: f(z) = sin(7z) in the
405 domain x € [—1,1] and g(z) = cos(5z) in the domain z € [—1,1]. Model f(z) was evaluated
106 at 6 equally spaced training input points x, resulting in z = f(x). Model g was then evaluated
107 at these output points, z. POB emulators, f(-) and g™ (-), of the functions were developed
108 using these input, and shown in Figure 5,

409 The POB linked emulator was then constructed using Theorem 6.1 and is shown in the
410 left panel of Figure 6. The linked GaSP is a good emulator, acting as an interpolator at the
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1 063 -026 011 048 085 1 -063 -026 0.11 048 085
X X

Figure 6. The left panel is the POB linked GaSP of go f. The right panel is the POB composite emulator
of the composite model. The pink lines are the true functions. The dark green lines are the emulator means.
The green shaded regions are the regions enclosed by the 2.5% and 97.5% quantiles of the emulators. Circles
on the plot correspond to sequentially obtained design points {x, (g o f)(x)}.

design points of the emulator f*(-) and providing 100% coverage, better than the nominal
coverage.

The first example in the supplementary materials demonstrates that if we take two func-
tions and run them on separately developed designs, then we can still construct a good ap-
proximation to the coupled model without ever observing the coupled system. In our previous
examples we get design for two functions sequentially, not independently. This may not be
desirable in practice, since this brings restrictions on possible experimental designs and may
be detrimental for individual emulators. The example in the supplementary materials high-
lights that there is no need for running computer models sequentially in order to apply the
methodology of the linked emulator.

Important though is that we can not construct the composite emulator if the simulators
are ran independently (not sequentially), so then there is no any benchmark to compare our
linked emulator to. Thus, we left the example with the sequential designs in the manuscript,
and the additional example with independent designs (using the same functions) is given in
the supplementary materials.

6.1.3. Comparison of the POB linked GaSP and POB composite emulator. The POB
composite emulator of g o f was also constructed, and is represented in the right panel of
Figure 6. The emulator completely misses the behavior of the function, and the reason is that
mentioned earlier: g o f is much more wiggly than either ¢ or f, and so cannot be captured
with only 6 design points.

The predictive criterion of subsection 2.3 were also applied for this comparison, but there
is no point in reporting the results here, since the POB composite emulator was so bad. These
results can be found in the supplementary materials.

6.2. OB linked emulator. The OB emulator of ¢ utilizes the usual objective prior
7(B,02) o 1/0? for the mean parameters and variance of the GaSP, and treats these pa-
rameters in a full Bayesian fashion. The remaining parameters are estimated as discussed
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in subsection 2.2, but here will just be considered given. The resulting emulator (see [11]),

gM, conditional on the observed computer model evaluations gM(z), follows Student’s t-

distribution with m — ¢ degrees of freedom and mean p*(z’) and variance o*(z’) given by

p'(z') = h(z') + oz, 2)C; ' (g™ (2) — h(z)B),

gM(z)' (C;1 - C.'h(z)(h(z)"C; 'h(z)'h(z)" C; )gM(2)
m—q

(Co —c(z,2)C e(z,2') + (h(2) — (2, 2)C 'h(z))

(h(z)"C;'h(z) " (h(z) - c(z, Z/)CZlh(Z))T) :

0_* (Z/) —

where ¢ is the number of terms in the linear mean function.

For linking with f, it is not possible to compute the predictive mean and variance in
closed form if an OB emulator is used for f. Thus we will assume that f* is a POB emulator.
The resulting linked emulator is given in the next theorem.

Theorem 6.3. Let g™, with given parameters 0g = (1,{0}=1,...4), be an OB GaSP emu-
lator of a simulator g that was exercized at training input points z. Suppose the mean is linear
in the bth cooordinate of an input z', so that the mean is h(z')8 = By + Pi1z}. Let the gM ()
GaSP correlation function smoothness parameters o of coordinates j € b,...,d be equal to
2. For each j €b,...,d let fJM be an independent emulator of a simulator f;, corresponding
to the coordinate j of the input to the simulator g, i.e. fy() is any GaSP with predictive
mean and variance at any input - denoted as u}"cj(-) and J*?j(-) respectively. Then the mean
E¢ of the linked emulator £ of the coupled simulator (go (fp, ..., fq))(1) is the same as that of
POB linked emulator. The variance V& differs from that of the POB linked emulator by the
expression for o2, which instead is

~ 1

0% = g™(2)

p——" (G = C-'h(z)(h(2)" C: 'h(z) 'h(z) O g™ (z).

Definition 6.4. ¢ ~ N(E¢, V&) will be called the OB linked GaSP.

Note that the predictive means of the ML linked emulator, POB linked emulator, and
OB linked emulator are all the same. Thus the linked emulator only differ in their predicted
variances. The difference between the predictive variances of the ML linked emulator and
POB linked emulator can be quite substantial, but the different between those of the POB
and OB linked emulators is usually modest, since the only difference is normalizing the variance
estimate by m instead of m — 2. For small m this could be an appreciable difference, but not
for typical training sample sizes.

7. Case study. We present an example of coupling two real computer models.

7.1. Volcano ash cloud system of computer models. The two models that are to be
coupled are the bent model of a volcanic ash plume and the puff model describing how the
ash cloud disperses; see [5, 15, 20] for discussion. A direct coupling of bent and puff (not
emulation) was used for analysis of the 14 April 2010 paroxysmal phase of the Eyjafjallajokull
eruption, Iceland, based on observations of Eyjafjallajokull volcano and information from

This manuscript is for review purposes only.



461
462

163
464
165
466
167
468
469
470

IS NN
T = W N =

C

~ 1 3 : \! -~ =

W~

~J

478
479
480
181
482
183
484
185
486

187

COUPLING COMPUTER MODELS THROUGH LINKING THEIR STATISTICAL EMULATORS 17

Table 2
Predictive evaluations for the bent output emulators.

Bent output EFC | RMSPE/RMSPEy.s | Lcr

plumeMax (m) 0.980 0.017 58.84

plumeMin (m) 0.978 0.016 55.10

plumeHwidth (km) 0.949 0.030 0.196

AshLogMean, (log2 ﬁ) 0.991 0.007 0.009

AshLogSdev, (log2 ﬁ) 0.978 0.021 0.021
Table 3

Predictive evaluations for the emulator of puff.

EFC | RMSPE/RMSPEpase | Lt
0.95 0.16 18.46

other similar eruptions of the past. The goal in this section is to develop a linked emulator of
these computer models.

7.1.1. Bent simulator. Bent is a volcanic eruption column model. The inputs to this
model are the source conditions for an eruption. Most of the parameters of the models are fixed
at particular values, with only four parameters — vent radius, vent velocity, mean grain size,
and grain size standard deviation — being variable. These four parameters, x = (1, z2, 3, Z4),
are thus the inputs to the bent model.

Bent produces 5 output variables: plumeMax, plumeMin, plumeHwidth, ashLogMean
and ashLogStdev. We model each output variable, j = 1,...,5, as an individual POB GaSP,
depending on input x*, so that fJM(x*) ~ N(,u}j (x*), o}f(x*)).

7.1.2. Puff simulator. The puff computer model takes the output of bent, the 5-
dimensional vector z, and produces positions of representative numerical particles of the ash
cloud, as they are affected by wind, turbulence and gravity. These outputs are post-processed
to extract quantities of interest at a given geographical location and time point. The puff out-
put that we emulate here is the maximum height of the ash (at a given space-time location)
g () ~ GaSP(M;('),U*Z(', -)). The puff simulator produces different random output values

g
for the same input, so that we choose an OB GaSP emulator, with a nugget, to model puff.

7.1.3. Construction and evaluation of the individual GaSPs. The emulator of bent was
trained on 400 randomly chosen design inputs and validated on 1000 randomly chosen held-
out points, both chosen out of 5454 initial points from a Latin Hypercube Design. The puff
emulator was trained on a total of 739 outputs and tested on 1000 held-out data points. The
739 outputs were obtained by, using as inputs, the 400 outputs of bent, i.e., the models were
run sequentially. (Again, this would not be necessary to construct the OB linked GaSP, but
is necessary to construct the composite emulator for later comparison.) Since puff is not a
deterministic model, it was rerun at 339 of these 400 inputs, resulting in the total of 739
outputs.

Tables 2 and 3 give the predictive evaluations of the bent and puff emulators, respectively,
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Table 4
Predictive evaluations for the OB linked GaSP and composite emulator of a coupled system of puff and bent.

Emulator EFC | RMSPE/RMSPE},se | Lcr
Linked GaSP | 0.951 0.17 18.55
Composite 0.960 0.17 19.52

for each of the output variables for which the emulators were constructed. The relative ratios
of RMSPEs are very low, and the Cls are small, indicating the emulators are giving excellent
approximations to the simulators. The empirical coverages are either close to or greater than
the 95% nominal values, indicating that the uncertainties given by the emulators are also
good.

7.2. OB linked GaSP and OB composite emulator. We constructed the OB linked GaSP
(9o (f1,---,f5))M(-) from the individual GaSPs, utilizing Theorem 6.3. The emulator was
evaluated at the same held-out test points as before; the resulting predictive evaluations are
shown in Table 4. The performance of the emulator is excellent, with rather small credible
intervals having empirical coverage very close to the nominal value.

The OB composite emulator was constructed from the 739 outputs obtained by sequen-
tially running bent and puff. The emulator was evaluated at the same held-out test points
as before; the resulting predictive evaluations are shown in Table 4. The composite emulator
performance is good here: small Cls with empirical coverage just above the nominal value.
The credible intervals are slightly longer than those for the OB linked GaSP (indeed, 989 out
of 1000 test points had linked emulator credible intervals smaller than that of the composite
emulator), but are still fine.

8. Conclusions and generalizations. The problem of coupling computer models was tack-
led by developing a closed form linked emulator, from GaSP emulators of each computer model
separately. In particular, multiple real-valued computer models were allowed as inputs to an-
other computer model. Of the various linked emulators developed, we would recommend
utilizing the OB linked GaSP, as it is closed form and incorporates the uncertainties in the
mean and variance parameters of the component GaSPs (as well as the uncertainties in the
individual GaSPs).

The approach was based on utilization of separately developed emulators for each computer
model, since these are available even when the computer models to be coupled cannot be run
sequentially. The illustrations in the paper were constructed in a sequential fashion, with
the outputs of one model being the inputs to the other; this also allowed construction of the
composite emulator, based solely on the inputs to the first model and resulting outputs of the
second. Perhaps surprisingly, the linked emulator performed better in the illustrations than
the composite emulator, by all predictive measures considered.

This also bodes well for the possibility of coupling emulators for more complex systems of
computer models than considered here. Separately developing emulators for each computer
model in the system, and then linking the emulators, is an attractive divide-and-conquer
strategy. Of course, one would have to be careful in choosing the design spaces for each emu-
lator development, to ensure the the emulator is being developed over the region of important
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outputs from the preceding coupled model. Further discussion of this can be found in [14].

The generalization of linking a GaSP emulator of computer model g with a GaSP emulator
of f, having multivariate output, is presented in the supplementary materials to this paper.
Closed form expressions for the resulting mean and variance functions are provided. We did
not highlight these results in this paper because it was subsequently found that multivariate
modeling does not bring significant advantages over individual modeling of each univariate
output of f [14]; the results from multivariate modeling are almost the same as those from
individual modeling of each output.

Appendix A. Proof of 3.3.

Proof. The mean and variance of the linked emulator can be expressed through the law
of iterated expectation and the law of total variance respectively.
For general mean of the GaSP h(-), the expressions are

B¢ = Bh(u®, i (u®),..., £’ (u /3+zalnexp< (lu; r> )H
VE = 0?(1+1) — (BO)*+

Em: (wax — 0*{C, 1}kl)ﬁ€<<ujsf'“jl)a *(lu ﬁm) )Hpkl

k=1 j=1
JA(CERE >...,f%<ud>>/3)2+z(h(u",fé”(ub),...,f%ud))ﬂ) "
- a : ox |uj — 2ij1 M (i) M w).
S f{on(-(252)")) st

Appendix B. Proof of lemma 4.2.

Proof. Taylor expansion of g™ (uy, ..., up—1, f1(-),..., fM(") is
gM(ula sy Up—1, fl;]M(ub)a s 7fé\/[(ud)) = gM(u17 ceey ub*lnu’;b(ub)v s 7/’L‘>;'d(ud))+
00 Dkb,...,kdgM(ul e Upq ,U«* (ub) N* (ud)) d
’ ) ) f ) ) f
) e ST M () - g, (i),
kp! ... kg! , /
|K|=1 j=b
where the sum is taken over all combinations of ky, ..., kg such that k, + ... + kg = | K]|.
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The convergence in Ls-norm is established as

BlgM (u, .. up1, £ (W), £ (u?) -
2
g (ur, e, i, (), e (u +Zu (g, () ()N | | =
Bl Y (DL 0™ (s, (0°), i, (0®) = g5 (e ()
j=b
o (2109 Y
ol (w -
J a;f(uJ)
io: Dkl“ 7kdg (Ul, ")ub—lvu}b(ub)w"7M}d(ud))
! !
&, Tl - g
d M (123) — % (11d)\ K
[To;" ) <fj ) %ij(u)> m
i aj(uJ)
M (u) = () 3
Let V; = ———=<— ~ N(0,1), then V}, ..., Vg are iid. The statement of the lemma follows.

o (u)
Appendix C. Proof of theorem 4.5.
Proof. Since U;Z(U*i) = 0, fJM(uj) has a degenerate distribution with Pr(fJM(uj) =
5 () = 1.
p((g © (fba s 7fd))M(u)|gM(Z)? f:jM(Xj)jeb7_“7d7 ef:ijeb,...,d’ 93’ u)

= [ plg" A ) Y )M ) ) B

d
[T (W) =, (@))df (), ..., df ) (u). =
J=b
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