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Uncertainty quantification
Experiments and observations are rare (e.g. volcano
eruptions (Bursik et al., 2012).)

Computer models are simulators based on mathematical
representation of reality.

Emulators are fast approximations to computationally
expensive simulators (Sacks et al., 1989).

Sometimes the output of a computer model is multivariate.

Model of a volcano eruption ash column has five outputs.

Minimum and maximum of a height of the ash column are
highly correlated.
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Myth

Multivariate modeling of a computer model multivariate
output leads to “better" emulation results than individual

modeling of each output.
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Outline

Gaussian stochastic process (GASP) emulator of a computer
model.

Emulation of computer models with multivariate output.
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Gaussian process emulator

Function g is a simulator of a computer model.
z = {z1, . . . , zm} is a vector of computer model inputs.

If {g(z1), . . . , g(zm)} = g(z) are the runs of the computer
model g at these inputs, then with a Gaussian stochastic
process gM(·) prior on g (Bayarri et al., 2007)

gM(z) ∼ N (µ, σ2gCz), (1)

where µ = (η̃(z1), . . . , η̃(zm)) and η̃(·) is the mean function of
the process, σ2g is the unknown variance and Cz is the
correlation matrix whose (k , l) element is given by a
correlation function c(zk , zl).
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Parameters of the GASP
η̃(·) = h(·)β where h(·)T is a vector of regression functions
and β are unknown regression coefficients (Sacks et al., 1989).

Correlation function c(·, ·) between outputs at two inputs zk
and zl equals

c(zk , zl) =
d∏

j=1
c(zkj , zlj). (2)

For the jth coordinate

c(zkj , zlj) = exp
(
−
(
|zkj − zlj |

δj

)αj)
(3)

with range δj ∈ (0,∞) and smoothness αj ∈ (0, 2].

GASP parameters θg = (β, σ2, {αj}j=1,...,m, {δj}j=1,...,m).
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GASP
Computer model evaluations g(z) at z are training data.

The posterior predictive GASP at a new input z′ (given GASP
parameters θg) is N (µ∗(z′), σ∗2(z′))

µ∗(z′) = µ(z′) + c(z′, z)C−1z (g(z)− µ), (4)
σ∗2(z′) = σ2(Cz ′ − c(z′, z)C−1z c(z, z′)), (5)

where Cz ′ is the correlation matrix whose (k , l) element is
c(z′k , z′l).

Posterior GASP is

gM(·) | g(z),θg ∼ GASP(µ∗(·), σ∗2(·, ·)). (6)



ksenia.kyzyurova@gmail.com Multivariate output emulation 9/29

Motivating example
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Motivating example

Independent modeling

f M
1 (·) | f1(z),θf1 ∼ GASP(µ∗1(·), σ∗21 (·, ·)),

f M
2 (·) | f2(z),θf2 ∼ GASP(µ∗2(·), σ∗22 (·, ·)) .

(7)

Multivariate modeling through conditional specification

f M
1 (·) | f1(z),θf1 ∼ GASP(µ∗1(·), σ∗21 (·, ·)),

f M
2 (·) | f M

1 (·) = f M
1 (·) + ξ .

(8)
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Perfectly correlated functions

Proposition. Let y2 = λy1 + ξ, η1(·) and η2(·) have the same
form of linear regression with an intercept and the same
correlation function form in each process. Then marginal
emulators constructed with independent modeling and
multivariate, conditionally specified, coincide exactly, if MLEs
of parameters are used.

At a new point x′

f M
1 (x′) ∼ N (µ∗1(x′), σ∗21 (x′)) , (9)

f M
2 (x′) ∼ N (ξ + λµ∗1(x′), λ2σ∗21 (x′)) . (10)

We should not expect improvement from joint modeling for
less correlated functions.
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Linear model of coregionalization

LMC for model-based geostatistics attempts to model outputs
that “covary". (Schmidt and Gelfand, 2003).

If Wi
ind∼ GP(0, ci(·, ·)), i = 1, . . . , p with unit variances. A is

a p × p matrix. Then p outputs of a computer model
Y = (Y1, . . . ,Yp) are modeled as

Y = η(·) + AW , (11)

where W = (W1, . . . ,Wp) and η(·) = (η1(·), . . . , ηp(·)) is a
vector of p mean functions.

AAT = Σ is interpreted as covariance matrix of p outputs.
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LMC likelihood
n inputs x = (x1, . . . , xn) and outputs y = (y(1), . . . , y(n)),
where y(j) = (y (j)

1 , . . . , y (j)
p ).

y ∼ N
(

µ, Σ̃ =
p∑

j=1
Cj ⊗ Tj

)
, (12)

where
µ = (µ(1), . . . ,µ(n));
µ(j) = (η1(xj), . . . , ηp(xj)) ∀j = 1, . . . , n,
Tj = A·jAT

·j and A·j is the jth column of matrix A,
Cj is the jth correlation matrix whose (k , l)th element is
cj(xk , xl).

We investigate theoretical properties of the LMC model.
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Crucial computational lemmas

Determinant and inverse of the LMC covariance matrix.

det Σ̃ = det
 p∑

j=1
Cj ⊗ Tj

 = (detΣ)n
p∏

j=1
detCj , (13)

Σ̃−1 =
p∑

j=1
C−1j ⊗ Sj , (14)

where Sj = (A−T
·j) (A−T

·j)T.
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LMC GASP emulator
Joint and conditional distributions.

Theorem. The LMC GASP emulator, conditional on the
computer model evaluations y, at any new point x′ is
N (µ′,R′) with

µ′ = η(x′) +
 p∑

j=1
Rj

T
x ,x ′

(
Rj x ,x

)−1
⊗ TjSj

 (y− µ) ,

R′ =
p∑

j=1

(
1− Rj

T
x ,x ′

(
Rj x ,x

)−1
Rj x ,x ′

)
Tj ,

where Rj x ,x ′ is the cross-correlation between outputs at a new
input x′ and inputs x1:n and Rj x ,x is the correlation matrix
between outputs of inputs x1:n.
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Independent model (IND)

LMC model with diagonal A, such that Aij = 0 for any i 6= j
and Ajj 6= 0.

Then jth output of the model is independent from any other
output, and

Yj ∼ GP(ηj(·),A2
jjcj(·, ·)) . (15)

Each process Yj has variance A2
jj .
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Separable model

cj(·, ·) = ci(·, ·) = c(·, ·) for any i , j = 1, . . . , p.

Then the joint distribution of p output variables obtained from
evaluation of a computer model at n input points x is

y ∼ N (µ, Σ̃ = R⊗Σ) , (16)

where R is correlation matrix given by correlation function
c(·, ·).
Separable model does not depend on matrix A in the
decomposition Σ = AAT.
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Irrelevance of the LMC model

Proposition. In case of perfect correlation or anticorrelation
of functions, LMC GASP emulator marginals (if specified
conditionally) coincide exactly with independently constructed
emulators of each output (with MLE estimates of parameters).

Theorem. Marginal emulators coincide for independent and
separable models (with MLE estimates of Σ), if correlation
function c(·, ·) with its parameters is given.
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Irrelevance of the LMC model (cont.)

Theorem. Let A be symmetric and let the correlation
functions cj(·, ·) be fully specified for each j = 1, . . . , p (Paulo

et al., 2012)). Then the sum of predictive variances, at any new
input x′, does not depend on any features of the matrix A
other than the marginal prior variances.

∑
diag(VyM(x′) | y) = K , (17)

where K = K (σ21, . . . , σ2p, x′).
Theorem. Cholesky decomposition of Σ (Schmidt and Gelfand,

2003). If processes W1, . . . ,Wp are given, then lower triangular
A keeps the first component marginal emulator the same as
the independent model (with MLE estimates of A). Upper
triangular A — the last component.
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Irrelevance of the LMC model

These theorems show analytically that LMC model is not
advantageous over IND.

In particular, in case of perfect correlation of outputs, no
benefit of LMC.

Generalization to other cases is complicated, because of the
need for estimation of parameters of the LMC model.

Correlation between outputs behaves nonintuitively.
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Correlation

Correlation between kth and lth outputs Yk and Yl is

ρkl =
∑p

i=1 AkiAli√
(∑p

i=1 A2
ki)(∑p

i=1 A2
li)
.

where Aij is the ith row, jth column element of matrix A.

Proposition. Zero-correlation between outputs ρkl = 0 does
not imply independence of the outputs.

Exceptions: Zero-correlation implies independence only in case
of a separable model or in case of bivariate output together
with symmetric A.
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Simulation study

Two test functions are two outputs of a computer model.

f (x) = 3x + cos(5(x + κ)), (18)
g(x) = sin(π(x + κ)), x ∈ [−1, 1]. (19)

Each value of κ corresponds to one simulation study.

211 equidistant points of κ ∈ [−3π
2 ,

π
2 ].
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Example of two outputs
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Correlation between functions
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Correlation between functions

Definition. Correlation ρ, between two smooth functions
f1(x) and f2(x) on some input space X , is defined as

ρ =
∫
X [(f1(x)−

∫
X f1(z) dz)(f2(x)−

∫
X f2(z) dz)] dx√∫

X (f1(x)−
∫
X f1(z) dz)2 dx

∫
X (f2(x)−

∫
X f2(z) dz)2 dx

.
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LMC estimated correlation
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Figure: Left panel: true correlation between functions f and g vs.
observed sample correlation for all simulation studies. Right panel:
true correlation vs. the estimate from the LMC model for all
simulation studies. The solid line on both panels is y = x .
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Conclusion

Multivariate modeling of a computer model multivariate
output does not lead to better emulation results than

individual modeling of each output.
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Application

Bent, volcano ash plume model, has four-dimensional input
and five-dimensional output.

Puff, volcano ash transport and dispersal model, takes Bent
output as input and produces scalar output.

Coupling of Bent and Puff through linking their GASP
emulators. (Kyzyurova et al., 2018).

Linked emulators of Puff with
independent emulators of each of Bent output/
multivariate emulator of Bent

coincide almost exactly.
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Thank you

Questions
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Previous research on LMC model

Irrelevance of multivariate modeling has been observed before.

1. LMC (including separable) model on case studies in a
working paper of (Fricker et al., 2013).

2. 7 LMC simulation examples and a case study with LMC
model in (Kleijnen and Mehdad, 2014).

3. Separable model gave the same predictive mean as
independent modeling (Gu and Berger, 2016).

4. Similar accuracy of independent and multivariate
emulators reported in (Parussini et al., 2017).

In this work theoretical properties of the LMC model and its
emulator have been investigated.
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Simulation study. Simulation results

Table: Absolute differences in predictive checks and scores.

LMC f - IND f LMC g - IND g
∆RMSPE 0.0019 (-0.0031,0.0152) 8e-04 (-1e-04,0.0044)
∆LCI -0.0045 (-0.0283,0.0084) -0.0012 (-0.0044,0.0012)
∆EFC 0 (0,0) 0 (0,0)
∆logS -0.0059 (-0.0636,0.0717) -0.0059 (-0.0225,0.0145)
∆QS -0.0322 (-0.3718,0.4166) -0.0972 (-0.415,0.2198)
∆CRPS 1e-04 (-0.0015,0.0049) 0 (-1e-04,4e-04)
∆sphS -0.0043 (-0.075,0.1106) -0.0068 (-0.0443,0.0411)

Each cell provides the average value of a score or a predictive
check (with minimum and maximum values in parentheses)
across all the simulation studies with various values of κ.
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Pictorial representation
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Estimation of A and Σ

Matrix A is not estimable from the data only.

Theorem MLE Â satisfies the following system, if correlation
matrices of processes W1, . . . ,Wp are given,

1
2n
∑

ij
Â−TD̃ijÂ−1(y(j)y(i)T + y(i)y(j)T) = Ip×p. (20)

Corollary There are 2p MLEs.

A has p2 number of parameters. This is computationally
challenging for the estimation of parameters of the LMC
model.
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One proposal on estimation of Σ

Cholesky decomposition of Σ with lower triangular A (Schmidt

and Gelfand, 2003).

The likelihood depends on the order of data y associated with
processes. (Fricker et al., 2013)

Y1 = η1(·) + A11W1,

Y2 = η2(·) + A21W1 + A22W2,

...
Yp = ηp(·) + Ap1W1 + Ap2W2 + . . . + AppWp.

(21)
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Cholesky decomposition of Σ

Proposition If processes W1, . . . ,Wp are given, then
depending on the choice of lower or upper triangular matrix A,
one obtains analytically

different likelihoods,
different estimates of Σ and ρ,
different predictive distributions at a new input to a
computer model.

Lower triangular A keeps the first component marginal
emulator as the same as the independent model. Upper
triangular A keeps the last component the same as the
independent model.
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Another proposal on estimation of Σ

Symmetric A (Fricker et al., 2013).

Proposition LMC likelihood does not depend on the order of
data y, if processes W1, . . . ,Wp are not ordered or fixed. If
processes W1, . . . ,Wp are either ordered or fixed, then the
resulting likelihood depends on the order of data y.

Computationally challenging to estimate p(p + 1)/2
parameters of A simultaneously with p sets of parameters in
the correlation functions of processes W1, . . . ,Wp. Issues are
reported with p = 3 and p = 6 (Fricker et al., 2013).

No compelling argument to restrict A to be symmetric or any
other form.
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