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Prerequisites
Science attempts to describe complex natural or engineering phenomena by use of mathematical processes. These computer models are usually either computationally slow
and/or too resources demanding for operation of the model and sometimes even for storage of the data produced by the model. This makes the computer model output at
any desirable input not available. However, fast approximations to such an output may be obtained, once an emulator of the model (its statistical approximation), using
only a handful of input-output data points, is constructed. Construction of the ‘default’ emulator within its objective implementation is outlined below.

Statistical approximation to a computer model

Suppose that a computer model is represented by a smooth function f(·), which takes a d-dimensional input ζ ∈ Z ⊆ Rd, d ≥ 1 and produces a d∗-dimensional output
f(ζ) ⊆ Rd

∗
, d∗ ≥ 1. Both d and d∗ are positive integers. In the first two chapters of the present monograph, computer models with one-dimensional output d∗ = 1 are

considered. The problem of construction of statistical approximations to computer models with multivariate output is considered in chapter .
Suppose m inputs to the simulator ζ = (ζ1, ζ2, . . . , ζm) are chosen, and the computer model f has been evaluated at those inputs, resulting in outputs Ξ(ζ) =

(f(ζ1), f(ζ2), . . . , f(ζm)). Using these pairs of inputs and outputs {ζi, f(ζi)}mi=1 and assuming a Gaussian process prior Ξ(·) = GP(µ(·), cov(·, ·)) (specified by some mean
and covariance function) on the computer model output f(·), we aim at constructing a probabilistic representation of the model at any new input in its domain Z.

A Gaussian process is defined as a stochastic process, whose every finite sample of variables follows (all compatible) multivariate normal distribution. Since any
multivariate normal distribution is specified by its mean and covariance matrix, a Gaussian process may be specified by the mean EΞ(ζ) and covariance Cov(Ξ(ζk),Ξ(ζ`))
for any two inputs ζk and ζ`. For infinite number of random variables, the mean and covariance are convenient to specify parametrically (to satisfy the compatibility
requirements). For example, customarily is to specify the mean of the Gaussian process at point ζ as linear with two parameters, intercept β0 and slope β1

EΞ(ζ) = β0 + β1ζe , (1)

where e ∈ 1, 2, . . . , d is one of the input dimensions.
Equivalently, one may write EΞ(ζ) = Hβ =

(
1 ζe

)
β, where β =

(
β0 β1

)T
is a vector of linear model regression coefficients. HT is a vector of regression functions

evaluated at ζ. In this case, two regression functions are the constant ψ0(ζ) = 1 and ψ1(ζ) = ζe. These are the first and second element of the vector HT.
In theoretical development easy to extend the mean specification to any number of regression functions. If the number of regression functions is s, then one must specify

each of the functions h0(·), h1(·), . . . , hs−1(·); then H =
(
h0(ζ) h1(ζ) . . . hs−1(ζ)

)
.

Specification of covariance for infinite number of random variables is a more complicated matter, since it must be valid. Typically covariance between outputs of the
computer model at corresponding inputs is specified as the product of variance parameter σ2 and correlation function c(·, ·) evaluated at those inputs, i.e. for any two
inputs ζk and ζ`

Cov(Ξ(ζk),Ξ(ζ`)) = σ2c(ζk, ζ`) . (2)

If an input to the model is one-dimensional, i.e. d = 1, a convenient and useful choice for the purpose of emulation of a computer model is squared-exponential correlation
function, which is specified by the parameter ω

c(ζk, ζ`) = exp
{
− exp (ω) (ζk − ζ`)2

}
. (3)

If an input to the model is multi-dimensional with d ≥ 2, then convenient is to specify correlation function in the form of a product of correlation functions along each of
the d input dimensions, that is c(ζk, ζ`) =

∏d
j=1 c(ζkj , ζ`j) .

Lemma. The product of correlation functions is a valid correlation function.
Parameters of the mean and covariance form a vector of parameters θ = (β, σ2, ω) which altogether specify the Gaussian process. While β0 and β1 define a linear

mean trend, parameter σ2 is responsible for variability of the process, and parameter ω determines the range scale at which correlations among Gaussian process random
variables remain strong.
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Function f(ζ) = exp (−ζ) + sin(4ζ) in the range ζ ∈ [−1, 1] is taken as a prototype of a computer model. Suppose this model has been evaluated at eight input points
ζ = (ζ1, ζ2, . . . , ζ8) which are equadistantly placed between −0.94 and 0.94 resulting in outputs f(ζ) = (f(ζ1), f(ζ2), . . . , f(ζ8)) respectively.

Suppose for now that the parameters of the Gaussian process θ are known and given. Let these parameters be β0 = 1.5, β1 = 2, σ2 = 2 and ω = 2. Once these are set,
the construction of the Gaussian process emulator with parameters of the process being given is possible: assuming that this training data1 {ζ, f(ζ)} belong to its to-be
constructed approximation Ξ, such that Ξ(ζ) = f(ζ) and that Ξ has the Gaussian process prior, the model for the data is given by its likelihood

Ξ(ζ) ∼ N (Hβ, σ2Cω) , (4)

where Cω is the correlation matrix given by a correlation function c(·, ·) such that the element of the matrix at row ι and column ι′ equals to c(ζι, ζι′).
Let ζ′ be a vector of input points at which the approximated solution is desired to be found. The joint distribution for inputs ζ and ζ′ is multivariate normal(

Ξ(ζ)
Ξ(ζ′)

)
∼ N

((
Hβ
H′β

)
, σ2

(
Cω c(ζ, ζ′)ω

c(ζ′, ζ)ω C′ω

))
. (5)

True function
Mean of approximation
95%−CIs

f(
ζ)

ζ
−1.0 −0.5 0.0 0.5 1.0

0
2

Figure 1: Constructed statistical approximation to
the computer model f . The orange curve is the true
function; the green — the mean of the emulator; the
black dashed lines are those of the central 95%-credible
area. The purple points are design points.

The approximation Ξ at points ζ′ conditional on the training data {ζ, f(ζ)} is given by the predictive multivariate
normal distribution

Ξ(ζ′) | Ξ(ζ),θ ∼ N
(
H′β + c(ζ′, ζ)ωC−1

ω (Ξ(ζ)−Hβ), σ2(C′ω − c(ζ
′, ζ)ωC−1

ω c(ζ, ζ′)ω)
)
. (6)

This predictive distribution defines the statistical emulator, approximation to a computer model f at inputs ζ′.
Figure 1 demonstrates the approximation constructed for the simulator f .a

Theorem. Ξ(·) | ·,Ξ(ζ),θ is the stochastic process.

Proof. This is indeed so by construction. All joint disributions of any sequence of random variables are defined and
are compatible. �

Definition. Ξ(·) | ·,Ξ(ζ),θ is called the Gaussian process stochastic emulator (or approximation) to a computer
model f .

Ξ(·) | ·,Ξ(ζ),θ ∼ GASP(µ∗(·), σ∗2(·, ·)) , (7)

where GASP stands for Gaussian stochastic process, µ∗(·) is the mean of the predictive process and σ∗2(·, ·) is its
variance-covariance, which for any vector of inputs follow the distribution 6.

aIn literature words “emulator”, “surrogate”, “metamodel” are used interchangeably meaning “a probabilistic statistical approximation
to a computer model”.

Within objective implementation, suppose that parameter ω is fixed, then the prior for the rest of parameters β and σ2 for this normal model (4) is

p(β, σ2) ∝ 1

σ2
. (8)

The likelihood (4) for the model parameters L(ω,β, σ2; Ξ(ζ)) = p(Ξ(ζ) | ω,β, σ2), which is, while omitting all expression which do not contain parameters β, σ2, ω, is
proportional to

L(ω,β, σ2; Ξ(ζ)) ∝ |σ2Cω|−
1
2 exp

{
−1

2
(Ξ(ζ)−Hβ)T

1

σ2
C−1
ω (Ξ(ζ)−Hβ)

}
= (σ2)−

m
2 |Cω|−

1
2 exp

{
−1

2
(Ξ(ζ)−Hβ)T

1

σ2
C−1
ω (Ξ(ζ)−Hβ)

}
. (9)

1Also called design data points.
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Posterior distributions of parameters. Joint posterior distribution of parameters β and
σ2 is convenient to write in conditional form

p(β, σ2 | Ξ(ζ), ω) = p(β | σ2,Ξ(ζ), ω)p(σ2 | Ξ(ζ), ω) . (10)

These distributions are

β | Ξ(ζ), σ2, ω ∼ Nβ
(
(HTC−1

ω H)−1HTC−1
ω Ξ(ζ), σ2(HTC−1

ω H)−1
)
, (11)

σ2 | Ξ(ζ), ω ∼ IGσ2

(
m− s

2
,
Ξ(ζ)

T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ)

2

)
. (12)

Instead of using predefined ad hoc values of β and σ2, the maximum a posteriori estimates
obtained from the data are readily available from the joint posterior. Modes of posterior
distributions 11 and 12 are

β̂ = (HTC−1
ω H)−1HTC−1

ω Ξ(ζ) , (13)

σ̂2 =
Ξ(ζ)

T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ)

m− s+ 2
. (14)

Point estimates of these modes if the training data {ζ,Ξ(ζ)} is plugged in are

β̂ =

(
1.8344
−0.1047

)
, σ̂2 = 11.906 . (15)
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Figure 2: Plots of marginal posterior distributions for parameters σ2,
β0 and β1 of the Gaussian process.

As with respect to parameter ω, in this theoretical exposition, the maximum likelihood estimate of this parameter is used, while parameters β and σ2 being integrated
out. (In practice, the objective implementation considered in [1] and [2] is preferable over the MLE estimate.) That is, the likelihood function L(ω; Ξ(ζ)) is

L(ω; Ξ(ζ)) = p(Ξ(ζ) | ω) =

∫ ∫
p(Ξ(ζ) | ω,β, σ2)p(β, σ2)dβdσ2 (16)

∝
∫ ∫

(σ2)−
m
2 −1|Cω|−

1
2 exp

{
−1

2
Ξ(ζ)

T 1

σ2
C−1
ω Ξ(ζ)

}
exp

{
− 1

2σ2
βTHTC−1

ω Hβ

}
exp

{
− 1

2σ2

(
−2Ξ(ζ)

T
C−1
ω H(HTC−1

ω H)−1(HTC−1
ω H)β

)}
dβdσ2 = (17)

=

∫ ∫
(σ2)−

m
2 −1|Cω|−

1
2 | σ2(HTC−1

ω H)−1| 12 exp

{
− 1

2σ2
Ξ(ζ)

T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ)

}
Nβ
(
(HTC−1

ω H)−1HTC−1
ω Ξ(ζ), σ2(HTC−1

ω H)−1
)

dβdσ2

∝
∫ ∫

|Cω|−
1
2 |HTC−1

ω H|− 1
2Nβ

(
(HTC−1

ω H)−1HTC−1
ω Ξ(ζ), σ2(HTC−1

ω H)−1
)
IGσ2

(
m− s

2
,
Ξ(ζ)

T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ)

2

)
dβdσ2

∝ (Ξ(ζ)
T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ))−

m−s
2 |Cω|−

1
2 |HTC−1

ω H|− 1
2 ,

where s is the number of parameters in vector β.
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The corresponding log-likelihood function is

`(ω; Ξ(ζ)) = log(L(ω; Ξ(ζ))) = log(p(Ξ(ζ) | ω)) = const

− m− s
2

log(Ξ(ζ)
T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ))

− 1

2
log(det(Cω))− 1

2
log(det(HTC−1

ω H)) . (18)

The plot of the log-likelihood is given in Figure 3. The emulator then can be con-
structed using the estimated parameters β̂, σ̂2, ω̂.
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Figure 3: Log-likelihood `(ω; Ξ(ζ)). ω̂ is its maximum.

Accounting for uncertainty in parameters. Incorporation of uncertainty in parameters is defined as marginalizing over (or integrating out) the parameters. The
attempt is to integrate out as many parameters as possible from the corresponding approximation 6. The reason for doing this is two-fold: (a) to formally account for the
uncertainty in parameters expressed in their posterior distributions of these, and (b) to reduce the number of parameters which can not be integrated out and, therefore,
must be estimated as, for instance, maximum likelihood or maximum a posteriori.

Marginalizing over β, the predictive distribution, emulator, becomes:

p(Ξ(ζ′) | Ξ(ζ), σ2, ω) =

∫
p(Ξ(ζ′) | Ξ(ζ),β, σ2, ω)p(β | Ξ(ζ), σ2, ω)dβ .

β is integrated out following the lemma from [5]. That is, rewrite

Ξ(ζ′) | Ξ(ζ),β, σ2, ω = c(ζ′, ζ)ωC−1
ω Ξ(ζ) + (H′ − c(ζ′, ζ)ωC−1

ω H)β +N
(
~0, σ2(C′ω − c(ζ

′, ζ)ωC−1
ω c(ζ, ζ′)ω)

)
(19)

β | Ξ(ζ), σ2, ω = (HTC−1
ω H)−1HTC−1

ω Ξ(ζ) +N (~0, σ2(HTC−1
ω H)−1) (20)

Summing everything up, we get the following predictive distribution with β marginalized over

Ξ(ζ′) | Ξ(ζ), σ2, ω ∼ N
(
µ̃, σ2Σ̃

)
, (21)

where

µ̃ = H′β̂ + c(ζ′, ζ)C−1
ω (Ξ(ζ)−Hβ̂) , (22)

Σ̃ = C′ω − c(ζ
′, ζ)ωC−1

ω c(ζ, ζ′)ω + (H′ − c(ζ′, ζ)ωC−1
ω H)(HTC−1

ω H)−1(H′ − c(ζ′, ζ)ωC−1
ω H)T . (23)

By plugging-in estimates of parameters σ2 and ω we acquire a new emulator — the one which has the uncertainty from parameters β incorporated. The expression for
µ̃ contains β̂ — the mode (and the mean) of the posterior distribution of β given in equation (11). While we may easily plug in the estimate β̂, this is left so for the
convenience and clearance in the expression for µ̃; and to highlight that the mean of the (21) coincides exactly with that of the emulator for which posterior modes of
parameters β and σ2 are used.
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Theorem. Ξ(·) | ·,Ξ(ζ), σ2, ω is the stochastic process.
Corollary. Ξ(·) | ·,Ξ(ζ), σ2, ω is the Gaussian stochastic process emulator.

Accounting for variability in σ2, the following predictive distribution appears

p(Ξ(ζ′) | Ξ(ζ), ω) =

∫
p(Ξ(ζ′) | Ξ(ζ), σ2, ω)p(σ2 | Ξ(ζ), ω)dσ2 =

∫
NΞ(ζ′)|σ2,ω(µ̃, σ2Σ̃)IGσ2|Ξ(ζ),ω(α̃/2, β̃/2)dσ2 , (24)

where α̃ = m− s and β̃ = Ξ(ζ)
T
(C−1

ω −C−1
ω H(HTC−1

ω H)−1HTC−1
ω )Ξ(ζ) .

p(Ξ(ζ′) | Ξ(ζ), ω) ∝
∫

exp

(
− (Ξ(ζ′)− µ̃)TΣ̃−1(Ξ(ζ′)− µ̃)

2σ2
− β̃

2σ2

)
(σ2)−

m
2 −

α̃
2−1dσ2 ∝

(
β̃ + (Ξ(ζ′)− µ̃)TΣ̃−1(Ξ(ζ′)− µ̃)

)−m+α̃
2

∝

(
1 +

1

α̃

(Ξ(ζ′)− µ̃)Tα̃Σ̃
−1

(Ξ(ζ′)− µ̃)

β̃

)−m+α̃
2

. (25)

Ξ(ζ′) | Ξ(ζ), ω ∼ Tn(α̃, µ̃, γ2Σ̃) (26)

is the multivariate (n-dimensional, because n is the length of the vector Ξ(ζ′)) Student’s t-distribution. Once the estimate of ω is plugged-in, this distribution is an
approximation to the computer model f . This distribution is parameterized by degrees of freedom α̃, location parameter µ̃ and shape matrix γ2Σ̃, where γ2 = β̃/α̃. If the
training data are plugged in, then the estimate of γ2 = 4.6113.

Theorem. Ξ(·) | ·,Ξ(ζ), ω is the stochastic process. We call Ξ(·) | ·,Ξ(ζ), ω - the T -process. This process is not Gaussian, but it can also serve as an emulator of f .
Corollary. A Gaussian process whose mean is E(Ξ(·) | ·,Ξ(ζ), ω) and covariance is Cov(Ξ(·) | ·,Ξ(ζ), ω) is the GASP emulator of function f .

Alternative way to write out the multivariate t-distribution is Tα̃(µ̃, γ2Σ̃) which puts emphasis only
on the parameters of this distribution. As with respect to properties of the multivariate Student’s
t-distribution, the mean of the distribution is its location parameter µ̃, while variance-covariance
equals to α̃

α̃−2γ
2Σ̃.

The final approximation to the computer model that we have constructed in this chapter is shown in
Figure 4. Perhaps, surprisingly, but this emulator, which within objective implementation accounts
for uncertainty in all of its parameters except for just one, is a much better emulator than the one
we started with, which had somewhat ad hoc parameters, with no acknowledging for uncertainty in
their estimates. Visually, the approximation is much tighter while closely following the function itself.
The first emulator, shown in Figure 1 is not as good, providing somewhat large uncertainty by its 95%
credible area compared to very small uncertainty given by the last emulator. As we can see, the quality
of the approximation highly depends on the choice of the procedure about estimates of parameters of
the approximation.

True function
Mean of approximation
95%−CIs

f(
ζ)

ζ
−1.0 −0.5 0.0 0.5 1.0

1
3

Figure 4: Gaussian process emulator which accounts
for uncertainty in parameters β and σ2 within its ob-
jective implementation.

Next chapter discusses formal ways to assessing the quality of a constructed statistical approximation of a computer model (or any other statistical model). While in
this exposition we have compared the performance of the emulator as an approximation to the true function visually, in practice, assessing the quality of the constructed
approximation is not as trivial, because the number of computer model testing data points available for assessment of the emulator is limited.
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Chapter 1. Assessment of a statistical model
Protagoras argued that a man is a measure of all things. Within the decision-theoretic approach this is mathematically shown to be indeed so: scoring rules calculated for
predictive model evaluation and comparison are subjective. This means that the choice of a scoring rule for model comparison affects the results of the comparison and,
therefore, the decision on a model choice. What’s more, the scoring rules are hardly interpretable. Recommendation is to, instead, employ three independent frequency
estimates of the quality of model predictions: (1) empirical frequency coverage, (2) predictive bias, and (3) uncertainty (variability) in predictions.

In order to assess quality of the predictive performance of an emulator, in addition to training
data, one must obtain testing data. Since the computer model is computationally slow, a small
number of additional runs n has been obtained at inputs ζ∗ resulting in outputs f(ζ∗). As for
the illustrative example n = 7 testing inputs are shown in Figure 5. These are chosen right
in-between the pairs of the neighbouring training inputs. In this example (1) all testing outputs
are captured within the 95% central credible area provided by the emulator, indicating good
performance, (2) the bias — discrepancy between true values and the mean (on average or
the maximum) of the stochastic approximation is rather small, (3) the average (or maximum)
length of credible intervals is short, so that the emulator provides tight approximations for
testing points as well as along the whole domain of its inputs.

Mean of approximation
95%−CIs

f(
ζ)

ζ
−1.0 −0.5 0.0 0.5 1.0

0
2

Figure 5: The first emulator constructed in the previ-
ous chapter. Training points are those coloured in pur-
ple. The emulator is an interpolator at these points.
Testing points are coloured in yellow.

Denote the marginal predictive distribution for the ιth input ζ∗ι as pι. Let the mean of this distribution be µι and variance of the distribution σ2
ι . Formally the frequency

estimates are: empirical frequency coverage (EFC), the proportion of true values captured by the corresponding predictive distribution within its central 95%-credible
interval2

EFC =

(∑n
ι=1 If(ζ∗ι )∈CIι

n

)
100% ∈ (0, 100) , (27)

where CIι is the 95% credible area; root-mean-square predictive error (RMSPE) — the estimate of the bias3 —

RMSPE =

√∑n
ι=1(f(ζ∗ι )− µι)2

n
∈ (0,∞) , (28)

and the average length of the 95% credible intervals over n points

LCI =

∑n
ι=1 CIι
n

∈ (0,∞) . (29)

For normal predictive distributions the last estimate is defined as LCI =
∑n
ι=1 2×1.96σι

n . Since LCI does not have true values involved in its calculation, one may also obtain
this estimate over greater number of possible inputs — to investigate the overall emulator’s uncertainty in predictions. Useful is to verify that the maximal values among

2In my experience 95% threshold for a credible area has served as a useful nominal value. This choice is subjective. Other nominal values may be employed.
3Alternatively, one may calculate the average absolute mean bias as

∑n
ι=1 |f(ζ

∗
ι )−µι|

n
∈ (0,∞).
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predictive credible intervals are acceptable, and are not substantially greater than average ones. Empirical values of EFC which correspond to the nominal (theoretical)
value of 95% are desired to be close to each other. However, one needs to subjectively assess if, say, 80% empirical coverage versus corresponding 95% area is good enough.
For other two frequency estimates, it is desirable that RMSPE and LCI are small.

Three estimates provide clear and intuitive interpretation of what they mean in the evaluation of the predictive performance of a model. Altogether, they attempt to
provide objective assessment because these are frequency estimates. These estimates must be considered independently. The attempt to collapsing them into one leads
to an improper criterion (an improper scoring rule)4, that is the rule that favours a wrong forecast rather than the true one. If one emulator (or any statistical model)
is substantially better than another one, then comparison with the frequency estimates reveal this fact. If two statistical models are on par in their performance, then
comparison between the models with any estimate or criterion is challenging.

There have been attempts to find a one single criterion which would make predictive model comparison possible. The methodology of scoring rules have been proposed.
Turns out, this task is not achievable. Two main properties of why this is so are: scoring rules are subjective; and being evaluated, the scores are hardly interpretable.

Definition. A scoring rule S is a function which takes a probabilistic forecast, that is, a random variable ζ whose distribution is F , and a true forecast, random variable
ω, producing a real-valued score S(ζ, ω).

Definition. A scoring rule is said to be proper if its maximum is reached at the true random variable, that is max(S(ζ, ω)) = S(ω, ω).5

Theorem. Every scoring rule is subjective, that is no scoring rule is equivalent to any other scoring rule.

Proof. Consider two scoring rules S1 and S2 that are distinct (that is functions S1(·, ·) 6= S2(·, ·)) and two forecasts ζ1 6= ζ2 in distribution, and the true variable ω, then
f(S1(ζ1, ω), S1(ζ2, ω)) 6= f(S2(ζ1, ω), S2(ζ2, ω)), where f(x1, x2) is a function of two arguments used to compare scores, that is, for model comparison f(x1, x2) is either the
difference x1 − x2 or the ratio of corresponding scores x1/x2. �

This theorem holds, even if S2 is a monotone increasing transformation of S1. Therefore, the theorem asserts that conclusion on how much better one model is compared
to another is not possible to make.

Illustrative example. The illustrative example demonstrates that within a scoring rule the assessment may be inadequate. In particular, a popular logarithmic scoring
rule is chosen to demonstrate its deficiencies. Let p denote a predictive density of a forecast, real-valued random variable ζ. Let the random variable ω have a degenerate
distribution, that is P (ω = v) = 1. Therefore, v is the true realization. Consider a logarithmic scoring rule

logS(ζ, ω = v) = log p(v) . (30)

Consider a class of normal predictive distributions with mean µ and standard deviation σ. Then for ζ ∼ N (µ, σ2) with predictive density p, the logarithmic scoring rule
with respect to v is

logS(ζ, ω = v) = − log(2πσ2)

2
− (v − µ)2

2σ2
. (31)

Assuming that the true value v equals to zero, a plot with contourlines of scores which in this case depends simply on the mean and standard deviation of the random
variable ζ is shown in Figure 6. The contourlines show that since there are infinitely many points along a particular contourline, infinitely many distributions exist which
have exactly the same value of a log-score. The same value of a score makes these distributions to be considered equally good predictive distributions, but these distributions
may be very different from each other.

4Predictive model choice criterion (PMCC) is improper.
5If in this definition the scoring rule is maximized, then the scoring rule is said to be positively oriented. Alternatively, one can choose to minimize a scoring rule, then the rule is said to be negatively

oriented.
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Figure 6: Contourlines of the logarithmic score given
for a class of normal distributions characterized by two
parameters: mean µ and standard deviation σ. Two
coloured points correspond to two distributions.

As example, consider two points on the plot: the green point corresponds to the distribution
N (µ = −1.7, σ = 1.038363) and orange point corresponds to N (µ = 0.3, σ = 3.967767).
Indeed, the distributions are very different: the first distribution has a large bias — the
mean of the distribution is far from the true value of zero. The orange distribution has bias
more than 5 times smaller of that of the green one. However, the orange distribution has
standard deviation more than three times greater than that of the green one, which translates
to variance being more than 14 times greater. Yet, two distributions are assigned exactly the
same value of a logarithmic score.

Consider another example of two similar forecasts which could have resulted from two other
models, namely N (µ = 0.9, σ = 1) and N (µ = 1, σ = 0.9). Providing virtually the same
information on the predictive distribution in practice, the scores, as compared to the true
value of zero, are −1.323939 and −1.430862 respectively, thus differentiating between the two
distributions much more than one desires.

These examples demonstrate that logarithmic score can not distinguish between very different
distributions, assigning the same scores to considerably different shapes; and at the same time
assigning much more different value to very similar distributions. It may be demonstrated that
other scores provide similar but different contourplots for the class of normal distributions,
behaving in analogous way as have been observed with the logarithmic scoring rule.

Chapter 2. Computer model with multivariate output
Computer models often produce multivariate output for every single run of the model. There have been attempts to account for correlation among outputs in the construction
of a Gaussian process emulator of such a model with the goal of achieving a more accurate emulator. Both, theoretical evidence and simulations are presented here which
demonstrate that multivariate emulator does not lead to “better” (that is, more accurate, precise or less uncertain) emulation results compared to independent modeling of
each component of the output.

Suppose a computer model produces bivariate output, which may be described as two smooth functions f1(·) and f2(·). Suppose the simulator data is obtained at n
d-dimensional points ζ = (ζ1, . . . , ζn) from the input space X = X1 × . . .× Xd. In other words, at the ith input ζi, the output of a simulator is a two-dimensional vector
(f1(ζi), f2(ζi))

T.
The simplest emulator of such bivariate output of a computer model may be constructed choosing independent emulators of each output. That is, if ιth function is

assumed to come from a Gaussian process characterized by parameters θι = (βι, σ
2
ι ,ωι)

Φι(·) | θι ∼ GP(µι(·), covι(·, ·)) . (32)

A computer model bivariate output from the simulator by Φ1(ζ) = (f1(ζ1), . . . , f1(ζn)) and Φ2(ζ) = (f2(ζ1), . . . , f2(ζn)).

Φι(·) | ·,θι,Φι(ζ) ∼ GASP(µ∗ι (·), σ∗2ι (·, ·)) . (33)

The resulting independent emulators are the posterior predictive distributions which are independent normal distributions N (µ∗ι (ζ
′), σ∗2ι (ζ′, ζ′)), ι = 1, 2.

We want to compare such emulators to an emulator of a joint bivariate Gaussian process (f1(·), f2(·))T | ζ in terms of their predictive distributions. This is especially
of interest if f1(·) and f2(·) are suspected to be highly correlated. The answer if joint modeling is beneficial compared to independent modeling of multivariate output for
emulation purpose is no.
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Suppose f2(·) = λf1(·) + γ, where λ and γ are unknown constants. This is a situation of two perfectly correlated functions, for which one might expect to achieve the
most value from multivariate modeling. (Example of such functions is given in Figure 7.) The following proposition establishes this is false.

Proposition. Suppose the bivariate simulator f1 and f2 is observed at the input points ζ
and that f2 = λf1 + γ. GASP approximations that would result from emulating each output
independently are given by (33). Let c1(·, ·) and c2(·, ·) have the same functional form, but
with possibly different parameters ω1 and ω2. Let each Gaussian process mean be linear with
the same vector of regression covariates h(·)T, such that h0(·) = 1 defining an intercept, i.e.,

µι(·) = h(·)β(ι). Then the maximum likelihood estimates of the model parameters have the
following properties:

The estimates of the correlation parameters are the same, i.e. ω̂1 = ω̂2.
The estimates of the variances satisfy σ̂2 = λσ̂1.

The estimates of the intercepts satisfy β̂
(2)

0 = λβ̂
(1)

0 + γ and, for the other regression

coefficients, β̂
(2)

j = λβ̂
(1)

j .

Corollary. Let the predictive distribution of the ι’s output at a new point ζ′ be denoted as

Φι(ζ
′) ∼ N (µ∗ι (ζ

′), σ∗ι (ζ′, ζ′)) . (34)

At a new point ζ′ the predictive means and variances of the two independent emulators Φ1(·)
and Φ2(·) (with maximum likelihood estimates of parameters) are related as

µ∗2(ζ′) = γ + λµ∗1(ζ′) , (35)

σ∗22 (ζ′, ζ′) = λ2σ∗21 (ζ′, ζ′) . (36)

f2 = f1 + γ
f1

ζ
−1.0 −0.5 0.0 0.5 1.0

2
5

8

Figure 7: Two curves represent two output functions
f1(ζ) and f2(ζ) of a computer model. The circles cor-
respond to the design input-output points that are
used to construct the joint emulator.

Theorem. Let the joint predictive distribution of the two functions be specified conditionally, i.e.,

p(Φ2(ζ′),Φ1(ζ′) | ζ′) = p(Φ2(ζ′) | Φ1(ζ′), ζ′)p(Φ1(ζ′) | ζ′). (37)

Then marginal emulators Φ1(·) and Φ2(·) of each output f1(·) and f2(·) coincide in either their independent or joint modeling if maximum likelihood or maximum a
posteriori estimates of parameters of the processes are employed.

Therefore, no benefit is due to construction of a multivariate emulator of a multivariate output computer model compared to independent emulation of each output.
Proofs of the mathematical statements in this chapter are given in my thesis.

Chapter 3. Approximation to a system of computer models
Direct approximation of a system which consists of several computer models is difficult for computational and logistical reasons. The methodology of the linked Gaussian
approximation has been demonstrated to be a successful alternative. This is outlined in this chapter.

Consider two computer models, f1 and f2, whose inputs and outputs are real-valued; and for which the corresponding Gaussian process approximations (introduced
in chapter ) may be constructed. Let Ξ and Υ be the corresponding emulators. The emulator Ξ(·) at any new input, given pairs of model runs {ζ,Ξ(ζ) = f1(ζ)} and
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this emulator’s vector of parameters θΞ, is Ξ(·) | ·,Ξ(ζ),θΞ ∼ GASP(µ∗Ξ(·), σ∗2Ξ (·, ·)) . Likewise, the emulator Υ(·)of the model f2, given {κ,Υ(κ) = f2(κ)} and θΥ, is
Υ(·) | ·,Υ(κ),θΥ ∼ GASP(µ∗Υ(·), σ∗2Υ (·, ·)) . The parameters θΞ and θΥ here are assumed known. In practice, they are estimated.

Having introduced the framework for an emulator of a single computer model I consider a question how to approximate a system of two computer models f1 ◦ f2 defined
as the composite model if only the two submodels f1(·) and f2(·) may be independently computed at a few data points, while the composition f1 ◦f2(·) can not be observed.
For any new input u to the system of computer models f1 ◦ f2, the approximation is defined as Ξ ◦ Υ, which is denoted as Φ, i.e. p(Φ(u) | Ξ(ζ),Υ(κ),θΞ,θΥ, u) =∫
p(Ξ(Υ(u)) | Ξ(ζ),Υ(u),θΥ)p(Υ(u) | Υ(κ),θΞ)dΥ(u) .

Definition. The variable ξ = Φ(u) | Ξ(ζ),Υ(κ),θΞ,θΥ, u is called the linked emulator.

Theorem. Linked Gaussian emulator (or Gaussian approximation to a collection of random variables Φt, t ∈ T , where T is an index set) is a stochastic process.

Proof. The linked Gaussian emulator is a Gaussian stochastic process by construction: the mean, variances and correlation structure among all variables of this process
may be specified. Corresponding formulae rely on the laws of total mean, total variance and total covariance respectively.6.

Illustrative example. Two functions f2(x) = cos(2x) in the domain x ∈ [−3, 3] and f1(z) = cos(z/2) in the domain z ∈ [−2, 5] are test functions. Model f2 has been
evaluated at 8 training inputs; f1 — at 5 training data points. The simulators, their designs and emulators are shown in 8. The resulting linked Gaussian approximation
to f1 ◦ f2 is shown in 9.

−3 −2.14 −1.29 −0.43 0.43 1.29 2.14 3

−
1

0
1

x

  f
2

−1.94 −0.23 1.48 3.2 4.91

0
1

z

  f
1

Figure 8: Two test functions: f1(x) and f2(x) along with their Gaussian approxi-
mations. The dark green lines are the means of emulators, the yellow lines are the
true functions. 95% central credible area is shown with the green shaded regions.
The purple circles are at the design points.

−3 −2.14 −1.29 −0.43 0.43 1.29 2.14 3

1
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 O 

f 2

Figure 9: Linked Gaussian approximation to a system of simulators which has
never been observed; this is a quite accurate approximation to the system.

In [4] many more mathematical details on how linked approximations of com-
puter models may be constructed are provided. These include linking of ob-
jective Gaussian process emulators of computer models, analysis of linking of
multivariate input-output models, other illustrative examples, and examples
of doing so with more realistic computer models of volcano pyroclastic flows
and volcano ash plume dispersion.

6See details in [3]
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Chapter 4. Calibration of a computer model
If observations corresponding to the output of the model are collected, a theoretical model may be assessed on the agreement to the collected data. Moreover, given a computer
model and collected data, one might inquire which values of inputs to the model could have generated the collected data; thus, performing calibration of a model.

Calibration is, therefore, analogous to finding an inverse image of function f : Z → Y , given a set of n values y = (y1, . . . , yn) ∈ Y , that is f−1(y) = {ζ = (ζ1, . . . , ζn) ∈
Z : f(ζi) = yi ∀ i = 1, . . . , n}. However, this is indeed only an analogy, since in practice calibration involves (a) a computationally intensive computer model or a system
of such models, and (b) noisy collected data which does not arise from the computer model itself but is obtained in either an experiment or observed in nature. Calibration
framework which accounts for these two levels of complexity is presented in this study.

Suppose that n experimental data points y = (y1, . . . , yn)T have been collected; each ith point yi, i = 1, . . . , n has been obtained under some input conditions ζ∗i ∈ Z.
These input conditions are assumed to belong to the same input space ζ∗i ∈ Z as the computer model inputs.

Each ith input ζ∗i is comprised of a set of control variables ζ∗,ci ∈ Rd1 (say, first d1 inputs) and a set of calibration variables ζ∗,pi ∈ Rd2 , the set of the rest d2 = d− d1

variables; i.e. ζ∗ = {ζ∗,c, ζ∗,p}. A subset of control variables ζ∗,c is set and known. A subset of ζ∗,p is unknown. However, the unknown conditions are assumed to be the
same for all data points, i.e. ζ∗,p1 = ζ∗,p2 = . . . = ζ∗,pn = α.

Calibration aims at identifying such values of parameters α, that computer model output (that is of its approximation) Ξ(ζ∗) = (Ξ(ζ∗,c1 ,α), . . . ,Ξ(ζ∗,cn ,α))T obtained
at inputs ζ∗ with parameters α plugged in matches closely experimental data y.

Conditional on the computer model data {ζ,Ξ(ζ)}, within the emulation framework, computer model output Ξ(ζ∗) = Ξ(ζ∗,c,α) is given by the predictive distribution

Ξ(ζ∗,c,α) | ζ∗,c,α, ζ,Ξ(ζ) = (Ξ(ζ∗,c1 ,α), . . . ,Ξ(ζ∗,cn ,α))T | ζ∗,c,α, ζ,Ξ(ζ) . (38)

This yields the likelihood L(α; y) = p(y | ζ∗,c,α, ζ,Ξ(ζ)) for to-be calibrated parameters α, which is given by the distribution of experimental data y = (y1, . . . , yn)T

observed at ζ∗

L(α; y) = p(Ξ(ζ∗,c1 ,α) = y1, . . . ,Ξ(ζ∗,cn ,α) = yn | ζ∗,c,α, ζ,Ξ(ζ)) . (39)

To complete specification of the model, one must specify the prior distribution for unknown parameters α. In the calibration setting prior distribution p(α) on parameters
α is, though, possibly vague, but an expert-elicited prior.

The solution to the calibration problem is the posterior distribution p(α | y, ζ∗,c, ζ,Ξ(ζ)). For convenience the short notation is p(α | y) which implicitly assumes
conditioning on known controlled settings ζ∗,c and computer model data, that is, pairs of observations {ζ,Ξ(ζ)}. Posterior distribution is then obtained

p(α | y) =
L(α; y)p(α)∫
L(α; y)p(α) dα

. (40)

This distribution is well-defined since the prior p(α) is defined on closed space of parameters, and, therefore, the posterior is proper. Thus, the numerical solution (40)
to the calibration problem always exists.

Qualitative assessment of calibration results. Ideally, posterior p(α | y) identifies a small set of most probable parameters α such that computer model data
evaluated at these values matches closely collected data y. In the unfortunate scenario, one may find that even being evaluated at the most probable values of α, computer
model output may not match the collected data, thus, resulting in no agreement between the theory and the data. Such a case would indicate a crucial problem with either
a theoretical computer model or a prior on calibration parameters p(α), or both; demanding for more inquiry into domain knowledge.

The following posterior corresponding to the calibration of α is

p(α | y) ∝ N
(
y | µ∗f (t,α), σ∗2f ((t,α), (t,α))

)
p(α) . (41)

Probabilistic inversion (41) involves numerical computation of the inverse of the covariance matrix σ∗2f ((t, α), (t, α)) from the log-likelihood for different values of α.
This matrix may provide strong correlation between points, such that its correct numerical inversion becomes a challenging problem even if the number of experimental
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data points is small. Numerical errors coming from the inversion of the matrix in log-densities may preclude obtaining the correct solution. In order to overcome this
computational problem the information about the correlation structure in the likelihood may be omitted, effectively resulting in the following distribution (42) as an
approximation to the true posterior (41)

p(α | y) ∝ N
(
µ∗f (t,α),diag

(
σ∗2f ((t,α), (t,α))

))
p(α) . (42)

This distribution does not take information about GASP sample paths into account but only uses the information from the marginals of the corresponding likelihood.
Computing this approximated solution is trivial.

Proposition. Let the GASP correlation function be dependent of and decaying with distance along its inputs, then the further apart from each other experimental
data inputs are, the more their corresponding cross-correlations are approaching zero. Therefore, the closer approximation (42) is to the true posterior (41).

Proof. Following exposition of the GASP, correlation between two inputs ζ1 and ζ2 is c(ζ1, ζ2) =
∏d
j=1 c(ζ1j , ζ2j). For the jth coordinate correlations depend only on

the distance c(ζ1j , ζ2j) = c(|ζ1j − ζ2j |), whose properties are c(ζ1j , ζ2j) −→ 1 and c(ζ1j , ζ2j) −→ 0 as |ζ1j − ζ2j | −→ ∞. The last property proves the proposition.

Calibration with respect to noisy collected data. In practice collected data is not perfect and is observed with noise ε. That is, true values of y are not known
but may be estimated from the collected data. Collected data is denoted as yE . In the previous section the ideal scenario of the absence of any noise in the collected data
was assumed, resulting in that yE = y. In practice, true data y is not known, but posterior estimate on the true values of y given the collected data, i.e. the distribution
p(y | yE) may be obtained.

The more information about the error in the data yE is available, the better the estimate of posterior p(y | yE) is going to be. The common knowledge is that the
larger the noise in the data, the more replicates is required to be taken in order to estimate and reduce the noise. Ultimately, the quality of collected data matters most.

Having obtained posterior on the true values y | yE , calibration becomes

p(α | yE) =

∫
Y
p(α | y)p(y | yE)dy , (43)

where p(α | y) is given by equation (40).7

This form of the posterior reflects that one may be unsure about the truth, true values y. The more sure one is about the truth, the closer calibration framework (43)
is to (40). Calibration (43) also states that one is able to calibrate only to the extent that the observed data allow us to do it. This acknowledges the possibility that
calibration task with corrupt data (e.g., data with large noise or biased data or data with limited information on how the data has been obtained) does not allow to perform
calibration.

Chapter 5. Censoring for a computer model with zero-inflated
output
Computer model of a volcano pyroclastic flow, given a set of initial conditions, produces an output, maximum height of the flow at thousands of geographical locations. The
output is non-negative and often results in exact zero, thus, indicating the absence of a flow, and resulting in that the zero-height value of an output has a non-zero probability
to occur, as opposed to all other simulator output values. In order to account for these features of the output, the methodology of a censored GASP approximation to such
a computer model is employed. Customarily employed, usual GASP, does not allow to construct an approximation which would incorporate these features of the simulator.

7Computationally approximation to p(α | yE) may be obtained through sampling from the distribution p(y | yE). For each of the r independent samples ysmpli ∼ p(y | yE), i = 1, . . . , r, the

distribution α | ysmpli may be obtained. All combined (to integrate out y | yE), marginal p(α | yE) is the posterior estimate of the unknown parameter α. This approach is easily parallelizable, since
p(α | ysmpli) is independent from p(α | ysmplj) for all independent samples ysmpli, i = 1, . . . , r.
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Dealing with non-zero probability of a zero-inflated output is inconvenient, and, therefore, it’s tempting to ignore this important information this way or another. Two
possibilities to doing this exist: first, ignoring zero-output data from the construction of the emulator of the model; second, setting an assumption that the output is a
smooth function over the whole range of its values. Both assumptions are unappealing, because either important information from the zero-output data is completely
ignored, or the assumption of a smooth function which a priori is known not to hold true is employed. These are the reasons to construct a censored GASP approximation
which incorporates appropriate assumptions and its construction involves all possible data.

Let the computer model f be evaluated at n1 inputs ζO = (ζO1 , . . . , ζ
O
n1

) resulting in respective outputs f(ζO1 ), . . . , f(ζOn1
). In addition to this simulator data, at n2

inputs ζC simulator f(·) is known to produce values in the range (a, b) but values of the simulator f(·) at inputs ζC = {ζCi }
n2
i=1 are not known and are not available. That

is, it is known only that a < f(ζCi ) < b for each ith input in a set ζC . Originally this work has been motivated by construction of the emulator for the model of the height
of a pyroclastic flow, which demands that a = 0 and b = ∞. Other possibilities for choices of a and b are not considered in this work. Therefore, the output from the
computer model itself called fa(·) = max (a, f(·)), is a censored function. In other words, for each single input ζi the computer model output fa(ζi)

fa(ζi) =

{
f(ζi), if f(ζi) > a

a, otherwise .
(44)

Let the latent function f(·) be assigned a Gaussian process prior, i.e. Ξ(·) ∼ GP(µ(·), σ2c(·, ·)). Then, conditional on computer model data Ξ(ζO) and Ξ(ζC) the GASP
emulator of f is Ξ(·) | ·,Ξ(ζO),Ξ(ζC),θ ∼ GASP(µ∗(·), σ∗2(·, ·)) , the predictive distribution Ξ(ζ′) | Ξ(ζO),Ξ(ζC) at a new point ζ′.

In this work outputs Ξ(ζC) are not available. It is only known that Ξ(ζCi ) < a for each ith input ζCi . The following predictive distribution Ξa(ζ′) | Ξ(ζO),Ξ(ζC) < a
is of interest to us. Here a is an m-dimensional vector of ones (of length of a vector ζC) times constant a.

For a collection of m d-dimensional inputs ζ = {ζ1, . . . , ζm} (given parameters of the GASP θ) statistical approximation to the outputs at inputs ζ is Ξa(ζ) =
{Ξa(ζ1), . . . ,Ξa(ζm)} has a mixture distribution. This distribution consists of three parts: (a) an absolutely continuous distribution with respect to the reference measure

that is the sum of a unit point-mass at the m-dimensional vector (a, . . . , a)T, (b) Lebesgue measure on Rm>a and (c) mixed type measures on R|S̄|>a× a|S|, where S is a subset
of indices of m variables, i.e. S ⊆ 1 : m = {1, . . . ,m} and S̄ = {1, . . . ,m} \ S is a complementary subset of S.

The approximation Ξ(·) | ·,Ξ(ζO),Ξ(ζC),θ induces another stochastic process Ξa(·) — approximation to the simulator fa(·). Stochastic process Ξa(·) is specified by a
real-valued threshold a and a triple of a mean function µ(·), variance σ2 and correlation function c(·, ·).

Denote P(1 : m) as a powerset of 1 : m and cardinality |S| = cardS, then vector Ξa(ζ) has the following joint distribution

p(Ξa(ζ)) =



∫ a
−∞· · ·

∫ a
−∞ p(Ξ(ζ))

∏m
i=1 dΞ(ζi), Ξa(ζi) = a, i = 1,m,

∀ S ∈ P(1 : m) \ {∅, 1 : m} Ξa(ζi) > a, i ∈ S̄
p(Ξ(ζ)S̄)

∫
·· ·
∫

∆
p(Ξ(ζ)S | Ξ(ζ)S̄) dΞ(ζ)S̄ , Ξa(ζi) = a, i ∈ S

p(Ξ(ζ)) Ξa(ζi) > a, i = 1,m,

(45)

where ∆ = (−∞, a)cardS and 1,m = 1, . . . ,m. Here Ξ(ζ) has a multivariate normal distribution N (µ∗(ζ),σ∗2(ζ, ζ)) and Ξ(ζ)S = {Ξ(ζi)}i∈S is a realization with variables
S included in vector Ξ(ζ).

Theorem. Ξa(·) is a stochastic process.
Joint multivariate distribution of the latent emulator Ξ(ζ) of the simulator f at a set of design points ζ = (ζO, ζC) (design points ζO with corresponding uncensored

computer model output and design points ζC with corresponding censored output) is given as the following set of two distributions

Ξ(ζO) ∼ N
(
µ(ζO), σ2CzO

)
,

Ξ(ζC) | Ξ(ζO) ∼ N
(
µ∗(ζC), σ∗2(ζC)

)
.

8
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Corresponding joint multivariate distribution of the emulator Ξa(ζ) of the simulator output fa(ζ) at design input points ζ is given by the two distributions Ξ(ζO) and
Ξa(ζC) | Ξ(ζO) = Ξ(ζC) | Ξ(ζO),Ξ(ζC) < a. Namely

Ξ(ζO) ∼ N
(
µ(ζO),σ2CzO

)
,

Ξa(ζC) | Ξ(ζO) ∼ T N (−∞,a)

(
µ∗(ζC),σ∗2(ζC , ζC)

)
.

Predictive distribution at a new input to a computer model. In order to obtain predictive distribution of a simulator Ξa(ζ) at a new input ζ′, consider the
statistical approximation to a latent function f(·). Predictive distribution given by the latent emulator Ξ(·) at a new input ζ′, conditional on evaluations of the computer
model Ξ(ζ) at design input points ζ, is

Ξ(ζ′) | Ξ(ζ) ∼ N (µ∗(ζ′),σ∗2(ζ′, ζ′)) . (46)

Let Ξ(ζ) = (Ξ(ζO),Ξ(ζC)) denote a vector of evaluations of the model at inputs ζO with uncensored outputs and inputs ζC with censored outputs. Computer model
outputs Ξ(ζO) is given to us, but Ξ(ζC) are unknown. However, it is known that

Ξ(ζC) | Ξ(ζO),Ξ(ζC) < a ∼ T N (−∞,a)

(
µ∗(ζC),σ∗2(ζC , ζC)

)
. (47)

Distribution of interest is not closed-form, but a numerical approximation may be obtained. Computationally, in order to account for the censored observations ζC ,
samples from this truncated normal distribution (47) of Ξ(ζC) | Ξ(ζO),Ξ(ζC) < a may be obtained. Say, k samples from the distribution of vector {Ξ(ζC)i}ki=1 are
available. For each sample a vector Ξ(ζ)i = (Ξ(ζO),Ξ(ζC)i) is used to sample from (46), i.e. distribution Ξ(ζ′) | Ξ(ζ)i which is represented by

Ξ(ζ′) | Ξ(ζ)i ∼ N (µ∗(ζ′), σ∗2(ζ′, ζ′)) . (48)

Finally, latent marginal distribution Ξ(ζ′) | Ξ(ζ) = Ξ(ζ′) | Ξ(ζO),Ξa(ζC) = Ξ(ζ′) | Ξ(ζO),Ξ(ζC) < a is

p(Ξ(ζ′) | Ξ(ζO),Ξ(ζC) < a) =

∫
· · ·
∫
p(Ξ(ζ′) | Ξ(ζO),Ξ(ζC))p(Ξ(ζC) | Ξ(ζO),Ξ(ζC) < a) dΞ(ζC). (49)

Predictive distribution of the emulator Ξa(·) at a new input to the computer model ζ′ consists of two parts: a point mass at a and a Lebesgue measure on R>a. Namely,
the distribution is

Ξa(ζ′) | Ξ(ζO),Ξ(ζC) < a =

{
Ξ(ζ′) | Ξ(ζO),Ξ(ζC) < a, Ξa(ζ′) > a∫ a
−∞ p(Ξ(ζ′) | Ξ(ζO),Ξ(ζC) < a) dΞ(ζ′), Ξa(ζ′) = a .

(50)

Theorem. Ξa(·) | Ξ(ζO),Ξ(ζC) < a is a stochastic process.

Construction of an adequate emulator is essential for subsequent proper use of such an emulator for decision and policy making. If the purpose is not only to construct
an emulator as an approximation to the simulator, but to use this emulator for providing adequate uncertainty estimates and estimation of a probability of an event, e.g.,
a natural hazard from a volcano pyroclastic flow, then it is preferred to use a valid approximation, which in this case is given by a censored GASP.

One illusive limitation of the proposed framework is that a constructed latent process may have to perform extrapolation in a region with no positive output values.
However, the “censoring” operation performs conditioning of a latent process on the zero-output. This is because of this conditioning that censored emulator still performs
an interpolation rather than extrapolation.
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Chapter 6. Design of experiments for a large-scale computer
model
A simulator is defined as large-scale if the number of inputs is such that construction of its emulator (which involves optimization over its parameters) is prohibitively
time-consuming. In order to facilitate the exploration of such a simulator, useful is to divide inputs x into two groups, that is x = (κ,λ). First, design over the range of
κ, choosing, say, m points {κi}mi=1. For each κi develop a Gaussian process emulator over the rest of inputs λ. Second, for each set of fixed inputs λ, an emulator over κ
conditional on fixed λ is constructed.

This methodology may be used for facilitating parameter estimation and fast emulation of a model with many inputs. Depending on the purpose and implementation of
this methodology in practice, but the Gaussian process over the entire input space may be lost, although useful approximations are constructed.

My biography
This monograph is a follow-up after my dissertation “On Uncertainty Quantification for Systems of Computer Models” with which I completed philosophy doctorate (PhD)
in Statistical Science at Duke University, USA in 2017. In my dissertation I have developed and analyzed a fully probabilistic Bayesian framework for testing theoretical
scientific models, often realized as scientific computer models, with respect to experimental data.
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